the mesogen (100 mg) in dichloromethane (2 mL), evaporating the volatile solvent on the rotary evaporator, and then pumping on the residue under high vacuum for $1-2 \mathrm{~h}$. Three portions of the resulting mixture (ca. 25 mg) were placed in tubes constructed from $7-\mathrm{mm}$ Pyrex tubing which had been soaked overnight in 5% aqueous sodium hydroxide, washed repeatedly with distilled water, and oven-dried. The tubes were vacuum-sealed after three freeze-pump-melt degassing cycles. They were placed in the constant-temperature bath for 2 or 4 h (6 or 12 h for $1+2 \mathrm{c}$ in S1544), cooled, and then opened. The contents were dissolved in dichloromethane (ca. 1 mL) and analyzed by HPLC. Product yields were determined from the HPLC peak areas (calculated by triangulation), assuming identical detector responses for each set of adducts, and are the averages of three runs each analyzed in triplicate. The isolation and identification of 3-6 from the reaction of $\mathbf{1}$ and $\mathbf{2 a - c}$ in benzene
solution and analytical procedures for their separation and detection have been reported elsewhere. ${ }^{22}$

Acknowledgment. We thank E. Merck (Darmstadt) for the generous gifts of S1409 and S1544. Financial support of this work was provided by the Natural Sciences and Engineering Council of Canada and the Research Corporation.

Registry No. 1, 1059-86-5; 2a, 941-69-5; 2b, 58609-75-9; 2c, 141171-23-5; 3a, 141197-50-4; 3b, 112575-19-6; 3c, 141171-24-6; 4a, 141171-25-7; 4b, 112575-18-5; 4c, 141171-26-8; 5a, 141171-27-9; 5b, 112575-20-9; 5c, 141171-28-0; 6a, 141171-29-1; 6b, 141269-54-7; 6c, 141171-30-4; CnP, 141269-55-8; CnB, 141269-56-9; CnT, 141269-57-0; ChCB, 22575-27-5; S1409, 79709-85-6; S1544, 80955-71-1.

Synthesis of Azapenams, Diazepinones, and Dioxocyclams via the Photolytic Reaction of Chromium Alkoxycarbene Complexes with Imidazolines

Claudia Betschart and Louis S. Hegedus*
Contribution from the Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523. Received December 27, 1991

Abstract

Photolysis of chromium alkoxycarbene complexes with N-(benzyloxycarbonyl)imidazolines produced protected azapenams. Hydrogenolysis gave free azapenams which were stable, one of which was characterized by X-ray crystallography. Hydrogenolysis under acidic conditions produced hexahydro-1,4-diazepin-5-ones. Treatment of the free azapenams with camphorsulfonic acid produced unsaturated 14 -membered tetraazamacrocycles in excellent yield. These were reduced to dioxocyclams.

Introduction

The photolytic reaction of chromium carbene complexes with imines to produce β-lactams has been developed ${ }^{1}$ and extensively studied in these laboratories, ${ }^{2}$ and a wide range of β-lactam types has been synthesized by this methodology. These include monocyclic β-lactams, ${ }^{1,3}$ cephams, ${ }^{4}$ oxacephams, ${ }^{4}$ carbacephams, ${ }^{5,6}$ penams, ${ }^{5}$ carbapenams, ${ }^{5}$ and (in low yield) oxapenams, ${ }^{4}$ many in both the racemic and optically active ${ }^{7}$ forms. Noticably absent from this list are azapenams, a relatively rare class of compounds. Although azapenems, having an sp^{2} center in the 5 -membered ring, have been synthesized by a variety of methods, ${ }^{8-14}$ azapenams,

[^0]from the reaction of azidoketene with imidazolines, have only been detected as intermediates, but not isolated. ${ }^{15}$ Because of the mild reaction conditions (visible light, almost any solvent, no other reagents) and the broad scope of the photolytic reaction of chromium carbene complexes with imines to produce β-lactams, azapenams were chosen as suitable targets to test the limits of this methodology (eq 1). Below, the results of studies addressing this issue are reported.

Results and Discussion

Synthesis of Protected Imidazolines. Imidazolines are available by a number of routes, ${ }^{16}$ but the reaction of a 1,2 -diamine with tert-butyl isocyanide with silver cyanide as catalyst ${ }^{17}$ proved most

[^1]Table I. Selected Structural Features of Azapanam 4aa

4 aa		Bond Lengths, A	
$\mathrm{N}_{1}-\mathrm{C}_{3}$	1.394 (6)		1.375 (4)
$\mathrm{N}_{1}-\mathrm{C}_{1}$	1.473 (6)		1.447 (4)
$\mathrm{C}_{3}-\mathrm{O}_{4}$	1.210 (6)		1.210 (4)
$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.550 (7)		1.546 (5)
$\mathrm{C}_{1}-\mathrm{C}_{4}$	1.591 (8)		1.579 (4)
Bond Angles, ${ }^{\text {a }}$			
$\mathrm{C}_{3} \mathrm{~N}_{1} \mathrm{C}_{2}$	129.6 (4)		131.2 (3)
$\mathrm{C}_{1} \mathrm{~N}_{1} \mathrm{C}_{2}$	110.2 (4)		117.2 (3)
$\mathrm{C}_{1} \mathrm{~N}_{1} \mathrm{C}_{3}$	94.1(4)		95.3(3)
Σ	333.3	(Pyramical $=328.51$	343.7
$v_{C O}$	$1745 \mathrm{~cm}^{-1}$		$1780 \mathrm{~cm}^{-1}$

useful. Protection of the free NH group was deemed essential to prevent its reaction with the photogenerated ketene, so the easily removed BOC (benzyloxycarbonyl) group was appended directly to the crude imidazoline. Two N -protected imidazolines were prepared by this method: the achiral 4,4-dimethylimidazoline 1a and the optically active 4 - (S)-isopropylimidazoline 1 b (eq 2). These compounds existed as mixtures of two rotamers about the amide bond. The requisite optically active diamine for $\mathbf{1 b}$ was synthesized from (S)-valine by conventional, although not previously reported, methodology (eq 3).

Synthesis of Azapenams. Photolysis of chromium alkoxycarbene complexes $2 \mathrm{a}-\mathrm{c}$ with imidazolines $1 \mathrm{a}, \mathrm{b}$ produced protected azapenams 3aa-cb in fair to excellent yields (eq 4). In all cases only a single diastereoisomer was detected in the crude reaction mixtures although these were a mixture of two rotamers about the BOC amide bond. Removal of the BOC group was fast and efficient, giving free azapenams 4aa-cb in virtually quantitative yield. From achiral imidazoline 1a, single racemic diastereoisomers were obtained that had the relative stereochemistry shown. From optically active imidazoline lb, single, optically active diastereoisomers were obtained. Their absolute stereochemistry was assigned by analogy to closely related thiazoline systems ${ }^{1.18}$ and confirmed by an X-ray crystal structure of a subsequent product.

Because azapenams of this type have, to our knowledge, not been previously structurally characterized, an X-ray crystallographic structure determination on compound 4aa was carried out. Pertinent structural features, along with those of a closely
(18) Thompson, D. K.; Suzuki, N.; Hegedus, L. S.; Satoh, Y. J. Org. Chem., in press.

Figure 1. Compound 6aa.
related penam system, ${ }^{1}$ are collected in Table I. Full structural details will be reported elsewhere. Of note are the long amide $\mathrm{C}-\mathrm{N}$ bond $\left(\mathrm{N}_{1} \mathrm{C}_{3}\right)$, the long $\mathrm{N}_{1} \mathrm{C}_{1}$ bond, and the identical carbonyl $\mathrm{C}-\mathrm{O}$ bond length, notwithstanding the large difference in CO stretching frequency in the infrared spectrum. From the sum of the angles about the lactam nitrogen (Σ), the azapenam is considerably more pyramidal ${ }^{19}$ than the penam.

When the deprotection of BOC-azapenams 3aa-cb was carried out under acidic conditions, the reaction took a completely different course, producing hexahydrodiazepinones 5aa-cb in fair to good yields (eq 5). This reaction is likely to proceed by acid-catalyzed cleavage of the strained β-lactam ring of the deprotected azapenam, followed by hydrogenation of the resulting 7 -membered imine (see below for details). Most characteristic for this transformation was the change in γ_{co} from $\sim 1745 \mathrm{~cm}^{-1}$ for the azapenam to $\sim 1640 \mathrm{~cm}^{-1}$ for the caprolactam. Since the chiral centers were not involved in this transformation, no change in relative or absolute stereochemistry was expected, and single racemic (5aa-ca) or optically active (5ab-cb) diastereoisomers were obtained.

Hexahydrodiazepinones are another relatively uncommon class of compounds, appearing only sporadically in the literature and with few general synthetic approaches. ${ }^{20}$ Considering the very wide variety of substituted chromium carbene complexes available, as well as the structural variation possible in the imidazoline ring system, the reaction in eq 5 should provide a very general synthesis of this class of compound in both the racemic and optically active forms.

Treatment of azapenams 4aa-cb with camphorsulfonic acid in the absence of hydrogen and a catalyst resulted in the remarkably efficient production of the 14 -membered tetraazamacrocyclic compounds 6aa-cb, which were easily reduced to dioxocyclams 7aa-cb (eqs 6 and 7). There are a number of extraordinary features of this process. The first feature is its efficiency. In spite of the number of bonds being broken and formed, the fact that some kind of intermolecular dimerization must occur, and the fact

[^2]

Figure 2. Compound 6ab.
that a 14 -membered ring is formed directly from a [3.2.0] bicyclic system, virtually quantitative yields are obtained. For the racemic compounds 4aa-ca, macrocycles 6aa-ca are exclusively centrosymmetric, such that dimerization occurs only between complementary (R) and (S) enantiomers, with no (S, S) or (R, R) combinations being formed. This was confirmed by X-ray crystallography (Figure 1). As formed in solution, 6aa-ca exist as two distinct conformers, as evidenced by doubling of all peaks in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Crystallization leads to a single conformation, which can reequilibrate with the other one in solution under acid catalysis. Crystallization of this mixture again gave quantitative recovery of a single conformer. With optically active compounds 6ab-cb, a single, optically active compound was present both in the solid state and in solution, and no evidence for other conformers was obtained. The X-ray crystal structure (Figure 2) confirms the structure and absolute stereochemistry of these compounds, as well as the absolute stereochemistry assigned to compounds 4ab-cb.

Tetraazamacrocycles 6aa-7cb belong to the large family called cyclams. ${ }^{21}$ They have been synthesized by the condensation of ethylenediamine with ketones ${ }^{22}$ and the reaction of tetraamines with dihalides, ${ }^{23}$ ditosylates, ${ }^{24}$ or diesters. ${ }^{25}$ They have been

[^3]synthesized with pendent functional groups, ${ }^{26}$ with sulfur replacing some of the nitrogen groups, ${ }^{27}$ with fluorine on the periphery, ${ }^{28}$ and recently with optically active centers on the periphery (in $8-12 \%$ yield). ${ }^{29}$ Cyclams are particularly effective in coordinating first row transition metals ${ }^{30}$ and stabilizing unusual oxidation states and geometries (e.g., copper(0), ${ }^{31}$ copper(III), ${ }^{32}$ nickel(III), ${ }^{33}$ and monovalent palladium(II) ${ }^{34}$), although other metals such as aluminum, ${ }^{35}$ zinc, cadmium, ${ }^{36}$ and technicium ${ }^{37}$ also form complexes with these ligands. Metal cyclam complexes catalyze a number of classes of reactions, ${ }^{38}$ including the epoxidation of olefins ${ }^{39}$ and the oxidative cleavage of DNA. ${ }^{40}$ Given this very wide variety of chromium carbene complexes available, ${ }^{41}$ as well as the ease of synthesis of substituted imidazolines, the reactions reported in eqs 6 and 7 should make a very wide range of functionalized racemic and optically active dioxocyclams readily available in good yield for complexation and catalysis studies.
A reasonable hypothesis for the facile conversion of azapenams 4aa-cb to dioxocyclams 6aa-cb under acidic conditions is shown in eq 8. The ring strain of the bicyclo[3.2.0] system along with the pyramidalized (and thus more basic) amide nitrogen could result in a facile acid-catalyzed cleavage of the β-lactam $\mathrm{C}-\mathrm{N}$ bond. If this occurred without rearrangement, a highly strained trans-cycloheptylimine 8 would be formed. ${ }^{42}$ Under reducing conditions, conversion to hexahydrodiazepinones 5aa-cb results. In the absence of hydrogen, this strained imine could undergo a head-to-tail cyclodimerization (9) followed by a cycloreversion to generate the observed 14 -membered ring system. In the racemic series (4aa-ca), the dimerization must occur only between (R) and (S) enantiomers to account for exclusive formation of the centrosymmetric macrocycles 6aa-ca. ${ }^{43}$ Experimental confor-
(25) Tabushi, I.; Taniguchi, Y.; Kato, H. Tetrahedron Lett. 1977, 18, 1049.
(26) (a) Kimura, E.; Koike, T.; Uenishi, K.; Hediger, M.; Kuramoto, M.; Joko, S.; Arai, Y.; Kodama, M.; Iitaka, Y. Inorg. Chem. 1987, 26, 2975. (b) Kimura, E. Pure Appl. Chem. 1989, 61, 823. (c) Kimura, E.; Wada, S.; Shinonoya, M.; Takahashi, T.; Iitaka, Y. J. Chem. Soc., Chem. Commun. 1990, 397.
(27) Kimura, E.; Kurogi, Y.; Tojo, T.; Shionoya, M.; Shiro, M. J. Am. Chem. Soc. 1991, 113, 4857.
(28) Shionoya, M.; Kimura, E.; Iitaka, Y. J. Am. Chem. Soc. 1990, 112, 9237.
(29) Wagler, T. R.; Fang, Y.; Burrows, C. J. J. Org. Chem. 1989, 54, 1584.
(30) For an old review, see: Curtis, N. F. Coord. Chem. Rev. 1968, 3, 3.
(31) Bond, A. M.; Khalifa, A. Inorg. Chem. 1987, 26, 413.
(32) (a) Buttafava, A.; Fabbrizzi, L.; Perotti, A.; Poggi, A.; Seghi, B. Inorg. Chem. 1984, 23, 3917. (b) Fabbrizzi, L.; Forlini, F.; Perotti, A.; Seghi, B. Inorg. Chem. 1984, 23, 807.
(33) Calligaris, M.; Carngo, O.; Crippa, G.; DeSantis, G.; DiCasa, M.; Fabbrizzi, L.; Poggi, A.; Seghi, B. Inorg. Chem. 1990, 29, 2964.
(34) Blake, A. J.; Gould, R. O.; Hyde, T. I.; Schröder, M. J. Chem. Soc., Chem. Commun. 1987, 431.
(35) Robinson, G. H.; Sangokoya, S. A.; Pennington, W. T.; Self, M. F. J. Coord. Chem. 1989, 19, 287.
(36) Kimura, E.; Koike, T.; Shiota, T.; Iitaka, Y. Inorg. Chem. 1990, 29, 4621.
(37) Marchi, A.; Rossi, R.; Magon, L.; Duatti, A.; Casellato, U.; Graziani, R.; Vidal, M.; Riche, F. J. Chem. Soc., Dalton Trans. 1990, 1935.
(38) Yatsimirskii, K. B. Russ. Chem. Rev. 1990, 59, 1960.
(39) (a) Koola, J. D.; Kochi, J. K. Inorg. Chem. 1987, 26, 908. (b) Kinneary, J. F.; Alkert, J. S.; Burrows, C. J. J. Am. Chem. Soc. 1988, Il0, 6124. (c) Nam, W.; Ho, R.; Valentine, J. S. J. Am. Chem. Soc. 1991, 113, 7052.
(40) Chen, X.; Rokita, S. E.; Burrows, C. J. J. Am. Chem. Soc. 1991, 113, 5884.
(41) Seyferth, D., Ed. Transition Metal Carbene Complexes; Verlag Chemie: Deerfield Beach, FL, 1983.
(42) We thank Professor Jules Rebec for suggesting that the imine formed should be trans.
(43) The reason for this stereoselective dimerization is not clear, but does find precedent in the exclusive production of meso cyclams from the condensation of 1,2-propanediamine with acetone. See: Bembi, R.; Sondhi, S. M.; Singh, A. K.; Jhanji, N. K.; Roy, T. G.; Lown, J. W.; Ball, R. G. Bull. Chem. Soc. Jpn. 1989, 62, 3701.
mation of this sequence of steps must await further experimental results.

Experimental Section

General. If not otherwise stated, all NMR spectra were recorded in CDCl_{3}. Chemical shifts are given in $\delta \mathrm{ppm}$ relative to $\mathrm{Me}_{4} \mathrm{Si}\left(\delta 0,{ }^{1} \mathrm{H}\right)$ or $\mathrm{CDCl}_{3}\left(\delta 77,{ }^{13} \mathrm{C}\right.$). Optical rotations were measured on a PerkinElmer 24 polarimeter at 589 nm (sodium D line) in a $1.0-\mathrm{dm}$ cell with a total volume of 1 mL . Specific rotations $\left([\alpha]_{D}\right)$ are reported in degrees per decimeter at room temperature, and the concentration (c) is given in grams per 100 mL in the specified solvent.

The following chemicals were prepared according to literature procedures: (S)-valinol ${ }^{44}$ (in analogy to (S)-phenylglycinol), pentacarbonyl[(methoxy)(methyl)carbene]chromium(0) (19), ${ }^{45}$ and pentacarbonyl[(benzyloxy)(methyl)carbene]chromium(0) (2b). ${ }^{46}$

Pentacarbonyl[(tetrahydrofuran-2-yl)carbene]chromium(0) (2c). Graphite ($6.49 \mathrm{~g}, 540 \mathrm{mmol}$) was heated under vacuum at $150^{\circ} \mathrm{C}$ for 15 min . After it was cooled to room temperature, 2.35 g (60 mmol) of potassium in small pieces was added. The mixture was heated under argon at $150-190^{\circ} \mathrm{C}$ for 1 h to obtain the potassium laminate as a solid of bronze color. After the laminate was cooled to room temperature, 100 mL of THF was added and the suspension was cooled in a dry ice/ acetone bath. Chromium hexacarbonyl $(6.60 \mathrm{~g}, 30 \mathrm{mmol})$ was added, and the suspension was stirred for $1 \mathrm{~h} \mathrm{at}-70^{\circ} \mathrm{C}$ followed by 50 min at $0^{\circ} \mathrm{C}$. The greenish gray suspension was cooled again to $-70^{\circ} \mathrm{C}$, and 3.36 $\mathrm{mL}(4.23 \mathrm{~g}, 30 \mathrm{mmol})$ of 4 -chlorobutyryl chloride was added dropwise via syringe. After 10 min the reaction was allowed to warm to room temperature. After 1 h , silica gel was added, and the solvents were evaporated on a rotary evaporator. The residue was put on a short column of silica gel. Elution with $3 / 1$ hexane/EtOAc gave, after evaporation of the solvents, the crude product which was recrystallized from hexane to give 4.75 g ($18.1 \mathrm{mmol}, 60 \%$) of $\mathbf{2 c}$ as yellow crystals (physical data in accordance with literature ${ }^{46}$): ${ }^{1} \mathrm{H}$ NMR $\delta 4.91(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{OCH}_{2}$), $3.63\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(3)\right.$), 1.92 (quin, $J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(4)$).

4,4-Dimethyl- Δ^{2}-imidazoline. 2-Methyl-1,2-propanediamine (5.0 mL , 47.7 mmol), tert-butyl isocyanide ($6.5 \mathrm{~mL}, 57 \mathrm{mmol}$), and silver cyanide ($350 \mathrm{mg}, 2.6 \mathrm{mmol}$) were heated in a sealed tube at $85-90^{\circ} \mathrm{C}$. After 6 h , argon was bubbled through the reaction mixture, which was then kept at $85-90^{\circ} \mathrm{C}$ overnight. The product was distilled with a pump vacuum at about $60^{\circ} \mathrm{C}$ to yield 4.17 g of a colorless oil (42.5 mmol , 89\%): ${ }^{1} \mathrm{H}$ NMR $\delta 6.94$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), 4.39 (br s, $1 \mathrm{H}, \mathrm{NH}$), 3.28 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 152.1(\mathrm{C}=\mathrm{N}), 76.4$ $\left(\mathrm{CMe}_{2}\right), 60.9\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right)$; IR (neat) $\nu 1600(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$; MS $98\left(\mathrm{M}^{+}\right)$. This material was converted to 1a without further purification or characterization.

1-(Benzyloxycarbonyl)-4,4-dimethyl- Δ^{2}-imidazoline (1a). The imidazoline ($1.37 \mathrm{~g}, 14 \mathrm{mmol}$) and $2.09 \mathrm{~mL}(15 \mathrm{mmol})$ of triethylamine were dissolved in methylene chloride, and $2.07 \mathrm{~mL}(14.5 \mathrm{mmol})$ of benzyl chloroformate was added (exothermic reaction). After 1.5 h at room temperature, the mixture was washed with 5% aqueous NaHCO_{3} and water and dried over MgSO_{4}, and the solvent was evaporated to yield an oil which was chromatographed on silica gel ($1 / 1$ ethyl acetate/hexane) to give 2.49 g ($10.7 \mathrm{mmol}, 76 \%$) of a colorless oil: ${ }^{1} \mathrm{H}$ NMR (two rotamers, $\mathrm{a} / \mathrm{b} \approx 10 / 1) \delta 7.48(\mathrm{~b}) / 7.40(\mathrm{a})(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.37-7.28$ (m, 5 H, ArH), 5.20(a)/5.19(b) (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.72(b)/3.40(a) (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 1.44 (b) $/ 1.28$ (a) ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$) $;^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 50^{\circ} \mathrm{C}$, at room temperature the signals marked * appeared as two broad signals) δ 151.2* (CO), 144.9* ($\mathrm{C}=\mathrm{N}$), 135.5, 128.4, 128.3, 128.0 (Ar), 68.5* $\left(\mathrm{CMe}_{2}\right), 67.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 28.7\left(\mathrm{CH}_{3}\right)$; IR (neat) $\nu 1721$

[^4](CO), $1621(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 67.22 ; \mathrm{H}$, 6.94; N, 12.06. Found: C, 66.89; H, 7.01; N, 12.02 .
(S)- \boldsymbol{N}-(Benzyloxycarbonyl)valinol. (S)-Valinol ($10.4 \mathrm{~g}, 100.8 \mathrm{mmol}$) was dissolved in 70 mL of methylene chloride and 150 mL of a 5% aqueous solution of NaHCO_{3}. Benzyl chloroformate ($14.4 \mathrm{~mL}, 100.8$ mmol) was added (exothermic reaction), and the mixture was stirred for 2 h at room temperature. The layers were separated, and the water layer was extracted with methylene chloride. The combined organic fractions were dried over MgSO_{4}, and the solvent was evaporated to give 23.7 g ($99.9 \mathrm{mmol}, 99 \%$) of a white solid. The crude product was used for the next step. A small portion was recrystallized from hexane and a small amount of ethyl acetate to give very fine, white needles: $\mathrm{mp} 58.5-59^{\circ} \mathrm{C}$; $[\alpha]^{22} \mathrm{D}-16.9^{\circ}(c=2.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar})$, $5.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}), 5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.66\left(\mathrm{dd}, J_{1}=11.2 \mathrm{~Hz}\right.$, $\left.J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.59\left(\mathrm{dd}, J_{1}=11.2 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{OH}$), 3.50-3.40 (m, 1 H, CHN), 2.9 (br s, $1 \mathrm{H}, \mathrm{OH}$), 1.83 (oct, J $=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), $0.93\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\delta 157.1$ (CO), 136.4, 128.4, 128.0 (Ar), $66.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 63.5\left(\mathrm{CH}_{2} \mathrm{OH}\right), 58.5(\mathrm{CHN}), 29.1\left(\mathrm{CHMe}_{2}\right), 19.4\left(\mathrm{CH}_{3}\right)$, $18.4\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) 1686(\mathrm{CO}), 1552 \mathrm{~cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}, \mathrm{CI}\right) 238\left(\mathrm{M}^{+}\right.$ $+1)$.
(S)-3-Methyl-2-[(benzyloxycarbonyl)amino]butyl Azide. The protected valinol from above ($22.6 \mathrm{~g}, 95.2 \mathrm{mmol}$) was dissolved in 160 mL of toluene and $13.3 \mathrm{~mL}(95.2 \mathrm{mmol})$ of triethylamine. Mesyl chloride ($7.4 \mathrm{~mL}, 95.2 \mathrm{mmol}$) was added (exothermic reaction), and after 10 min , a solution of 47.9 g of NaN_{3} in 180 mL of water and 2.7 g of $\mathrm{Bu}_{4} \mathrm{NBr}$ were added. The mixture was heated overnight at $80-95^{\circ} \mathrm{C}$. After the mixture was cooled to room temperature, ether was added, the layers were separated, and the organic layer was washed with phosphate buffer ($\mathrm{pH} \sim 5.4,0.5 \mathrm{M}$), brine, and water and dried over MgSO_{4}. The solvents were evaporated to give $24.5 \mathrm{~g}(93.4 \mathrm{mmol}, 98 \%)$ of a yellow oil. The azide-containing aqueous layer was treated with aqueous ceric ammonium nitrate ${ }^{47}$ to decompose the azide for safe disposal. The crude product was used for the next step. A small portion was chromatographed on silica (hexane/EtOAc, 8/1): $[\alpha]^{22} \mathrm{D}-40.8^{\circ}(c=2.20$, MeOH); ${ }^{1} \mathrm{H}$ NMR $\delta 7.3-7.2$ (m, $\left.5 \mathrm{H}, \mathrm{ArH}\right), 5.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.97$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.6-3.5(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 3.35(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), 1.75 (oct, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}$), $0.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 156.1$ (CO), 136.3, 128.4, 128.0, 127.9 (Ar), $66.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 56.0(\mathrm{CHN}), 52.8(\mathrm{C}-$ $\left.\mathrm{H}_{2} \mathrm{~N}_{3}\right), 29.6\left(\mathrm{CHMe}_{2}\right), 19.3\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right)$; IR (neat) $\nu 2100\left(\mathrm{~N}_{3}\right)$, $1700(\mathrm{CO}), 1534 \mathrm{~cm}^{-1}$; MS ($\left.\mathrm{NH}_{3}, \mathrm{Cl}\right) 263\left(\mathrm{M}^{+}+1\right)$.
(S)-3-Methyl-1,2-butanediamine. The azide $(9.60 \mathrm{~g}, 37 \mathrm{mmol})$ was hydrogenated in 140 mL of methanol at 40 psi of H_{2} with 1.0 g of 10% Pd / C over 6 days. The catalyst was renewed three times in this period. The catalyst was then removed by filtration, and the solvent was evaporated. The residue was distilled by water pump vacuum at $\sim 66^{\circ} \mathrm{C}$ to give $1.92 \mathrm{~g}(18.8 \mathrm{mmol}, 51 \%)$ of a colorless oil that crystallized on standing: $[\alpha]^{22} \mathrm{D}+19.6^{\circ}$ (neat); ${ }^{1} \mathrm{H}$ NMR (methanol- d_{4}) $\delta 4.55(\mathrm{~s}, 4 \mathrm{H}$, NH_{2}), 2.78-2.70 (m, $1 \mathrm{H}, \mathrm{CHNH}$), $2.49-2.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 1.66$ (d of hept, $J_{1}=6.8 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}$), $0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.92\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (methanol- d_{4}) $\delta 60.0(\mathrm{CHN}), 46.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 32.7\left(\mathrm{CHMe}_{2}\right), 19.8\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right)$; IR (neat) $\nu 3350,3285,3176(\mathrm{NH}), 1591 \mathrm{~cm}^{-1}$.
(S)-4-($\mathbf{1}^{\prime}$-Methylethyl)- Δ^{2}-imidazoline. The diamine ($0.76 \mathrm{~g}, 7.4$ $\mathrm{mmol}), 1.5 \mathrm{~mL}(13 \mathrm{mmol})$ of tert-butyl isocyanide, and $55 \mathrm{mg}(0.4$ mmol) of silver cyanide were heated overnight in a sealed tube at ~ 85 ${ }^{\circ} \mathrm{C}$. Distillation of the mixture by pump vacuum at $\sim 66^{\circ} \mathrm{C}$ gave 0.87 g of a colorless oil. Although the NMR spectrum showed that the product was not pure, this oil was used directly for the next step: ${ }^{1} \mathrm{H}$ NMR $\delta 7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 4.35(\mathrm{~s}$, broad, $1 \mathrm{H}, \mathrm{NH}), 3.68-3.53(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CHN}$), $3.31-3.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}$), 1.66 (oct, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHMe}_{2}\right), 0.94\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 153.8(\mathrm{C}=\mathrm{N}), 65.9(\mathrm{CHN}), 52.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 32.9$ $\left(\mathrm{CHMe}_{2}\right), 18.7\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right)$.
(S)-1-(Benzyloxycarbonyl)-4-(1'-methylethyl)- Δ^{2}-imidazoline (1b). The crude imidazoline (0.869 g) was dissolved in 25 mL of tetrahydrofuran and $1.25 \mathrm{~mL}(9 \mathrm{mmol})$ of triethylamine. Benzyl chloroformate ($1.14 \mathrm{~mL}, 8 \mathrm{mmol}$) was added, and the mixture was stirred for 4 h at room temperature. Aqueous $\mathrm{NaHCO}_{3}(5 \%)$ was then added, the layers were separated, and the organic layer was washed with brine and then dried over MgSO_{4}. Evaporation of the solvent gave a yellow oil which was chromatographed on silica (hexane/EtOAc, $1 / 1$) to give $0.75 \mathrm{~g}(3.0$ $\mathrm{mmol}, 41 \%$ from diamine) of a colorless oil: $[\alpha]^{22} \mathrm{D}-96.5^{\circ}(c=3.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.53$ (br s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), $7.39-7.32(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{ArH}), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.99(\mathrm{br} \mathrm{q}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}(4)), 3.67$ ($\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.37 (br $\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 1.80
(47) Lunn, G.; Sansone, E. B. Destruction of Hazardous Chemicals in the Laboratory; Wiley-Interscience: New York, 1990; p 44.
(oct, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}$), $0.97\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 0.90 (d, J=6.7 Hz, 3 H, CH $)_{3}$) ${ }^{13} \mathrm{C}$ NMR (at $50^{\circ} \mathrm{C}$, at room temperature the signals marked * appeared as two broad signals) $\delta 151.0(\mathrm{CO})$, 146.7* (C=N), 135.5, 128.4, 128.2, 128.0 (Ar), 73.4* (CHMe), 67.6 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 45.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 32.5\left(\mathrm{CHMe}_{2}\right), 18.3\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right)$; IR (neat) $\nu 1724(\mathrm{CO}), 1623(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$. Anal. Caled for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 68.27; H, 7.37; N, 11.37. Found: C, 68.00; H, 7.22; N, 11.26

General Procedure for the Photoreaction of Pentacarbonylchromium Carbene Complexes with Imidazolines To Form Azapenams. The chromium carbene complex (1 mmol) and the imidazoline (1 mmol) were dissolved in acetonitrile (70 mL), and the resulting dark yellow solution was irradiated in a Pyrex tube under argon (450-W Conrad-Hanovia 7825 medium-pressure mercury lamp, Pyrex well). The reaction was followed by TLC (silica, hexane/EtOAc, 1/1). After 12 h , the solvent was evaporated, and the residue was dissolved in 140 mL of a $2 / 1 \mathrm{mix}-$ ture of hexane/EtOAc and exposed to air and either sunlight or 6-20-W Vitalites. The oxidation was complete when the supernatant solution was colorless and there were no signals at $2000-1800 \mathrm{~cm}^{-1}$ in the IR spectrum. Filtration through Celite and evaporation of the solvents gave an oil which was chromatographed on silica (hexane/EtOAc, 2/1).
($5 R^{*}, 6 R^{*}$)-4-(Benzyloxycarbonyl)-6-methoxy-2,2,6-trimethyl-1,4-diazabicyclo[3.2.0]heptan-7-one (3aa). Carbene complex 2a and imidazoline la were allowed to react according to the general procedure to give a 69% yield of product 3 as as a mixture of two rotamers: ${ }^{1} \mathrm{H}$ NMR (two rotamers $\mathrm{a} / \mathrm{b} \approx 7 / 4) \delta 7.4-7.3(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.27-5.10(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}\right), 3.77(\mathrm{a})(\mathrm{d}, J=10.5 \mathrm{~Hz}) / 3.71(\mathrm{~b})(\mathrm{d}, J=10.4 \mathrm{~Hz})(1 \mathrm{H}$, $\mathrm{HC}(3)), 3.47$ (b) $/ 3.34$ (a) $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.14(\mathrm{a}+\mathrm{b})(\mathrm{d}, J=10.4 \mathrm{~Hz}$, $\mathrm{HC}(3)$), $1.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29(\mathrm{~b}) / 1.19(\mathrm{a})\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{CH}_{3}\right), 1.17$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$) ${ }^{1} \mathrm{H}$ NMR $\left(50^{\circ} \mathrm{C}\right) \delta 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.20(\mathrm{~d}$, $\left.J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.14\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.11$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), $3.73(\mathrm{~d}, J=10.4 \mathrm{~Hz}, \mathrm{HC}(3)), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.13$ (d, $J=10.4 \mathrm{~Hz}, \mathrm{HC}(3)), 1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{CH}_{3}\right)$, 1.16 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\delta 173.6(\mathrm{~b}) / 173.2(\mathrm{a})$ (CO lactam), 153.8(b)/153.3(a) (CO carbamate), 135.9(b)/135.7(a), 128.4, 128.2, 128.0, 127.8 (Ar), $90.4\left(\mathrm{C}_{6}\right), 74.3(\mathrm{~b}) / 73.8(\mathrm{a})\left(\mathrm{C}_{5}\right), 67.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $61.0(\mathrm{~b}) / 60.5(\mathrm{a})\left(\mathrm{C}_{2}\right), 60.3\left(\mathrm{C}_{3}\right), 53.3\left(\mathrm{OCH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$, 13.6(a)/13.4(b) $\left(\mathrm{C}_{6} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(50^{\circ} \mathrm{C}\right) \delta 173.2$ (CO lactam), 153.6 $(\mathrm{CO}), 136.1,128.4,128.1,127.9(\mathrm{Ar}), 90.6\left(\mathrm{C}_{6}\right), 74.4\left(\mathrm{C}_{5}\right), 67.4$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 60.6\left(\mathrm{C}_{2}\right), 60.5\left(\mathrm{C}_{3}\right), 53.2\left(\mathrm{OCH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right)$, $13.4\left(\mathrm{C}_{6} \mathrm{CH}_{3}\right)$; IR (neat) $\nu 1770$ (CO lactam), 1713 (CO carbamate) cm^{-1}. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: $\mathrm{C}, 64.13 ; \mathrm{H}, 6.96 ; \mathrm{N}, 8.80$. Found: C, 63.88; H, 6.80; N, 8.81 .
($5 R^{*}, 6 R^{*}$)-4-(Benzyloxycarbonyl)-6-(benzyloxy)-2,2,6-trimethyl-1,4-diazabicyclo[3.2.0]heptan-7-one (3ba). Carbene complex 2 b and imidazoline 1a were allowed to react according to the general procedure to give a 72% yield of product as a mixture of two rotamers: ${ }^{1} \mathrm{H}$ NMR (two rotamers $\mathrm{a} / \mathrm{b} \approx 2.5 / 1) \delta 7.36-7.23(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 5.28-5.11(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}$), 4.77 (b) (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.71 (b) (d, $J=$ $\left.11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.61$ (a) (d, $\left.J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.56(\mathrm{a})$ (d, $\left.J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.79$ (a) $/ 3.72$ (b) $(\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{HC}(3)), 3.18(\mathrm{a}+\mathrm{b})(\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}(3)), 1.64(\mathrm{a}) / \mathrm{l} .62(\mathrm{~b})(\mathrm{s}$, $\left.3 \mathrm{H}, \mathrm{C}(2) \mathrm{CH}_{3}\right), 1.40(\mathrm{~b}) / 1.32(\mathrm{a})\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{CH}_{3}\right), 1.19$ (s, $3 \mathrm{H}, \mathrm{C}-$ (2) CH_{3}) ; ${ }^{1} \mathrm{H}$ NMR $\left(50^{\circ} \mathrm{C}\right) \delta 7.35-7.21(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 5.20(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 5.13 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 5.15 (s, $1 \mathrm{H}, \mathrm{CH}), 4.63\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.73(\mathrm{~d}, J=10.3 \mathrm{~Hz}, \mathrm{l} \mathrm{H}, \mathrm{HC}(3))$, $3.13(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}(3)), 1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}(6) \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.3(\mathrm{CO}$, lactam), 153.4 (CO), 137.6, 135.7, 128.6, 128.3, 128.0, 127.7, 127.5, 127.4 (Ar), 90.6(b) $/ 90.5(\mathrm{a})\left(\mathrm{C}_{6}\right), 74.9(\mathrm{~b}) / 74.5(\mathrm{a})\left(\mathrm{C}_{5}\right), 68.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.6(\mathrm{a}) / 67.5(\mathrm{~b})$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 60.7\left(\mathrm{C}_{2}\right), 60.4\left(\mathrm{C}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right), 14.5(\mathrm{a}) / 14.1(\mathrm{~b})$ $\left(\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(50^{\circ} \mathrm{C}\right) \delta 173.1$ (CO lactam), $153.4(\mathrm{CO}), 137.8$, 135.9, 128.4, 128.1, 127.8, 127.4, 127.2 (Ar), $90.5\left(\mathrm{C}_{6}\right), 74.8\left(\mathrm{C}_{5}\right), 67.9$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 60.6\left(\mathrm{C}_{2}\right), 60.4\left(\mathrm{C}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right)$, $14.1\left(\mathrm{CH}_{3}\right)$; IR (neat) $\nu 1773$ (CO, lactam), 1713 (CO, carbamate) cm^{-1} Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 70.03 ; \mathrm{H}, 6.64 ; \mathrm{N}, 7.10$. Found: C , 69.89; H, 6.45; N, 7.07 .
($5 R^{*}, 6 R^{*}$)-4-(Benzyloxycarbonyl)-2,2-dimethyl-1,4-diazabicyclo-[3.2.0]heptan-7-one-6-spiro-2'-tetrahydrofuran (3ca). Carbene complex 2c and imidazoline 1a were allowed to react according to the general procedure to give a 90% yield of product as a mixture of two rotamers ${ }^{1} \mathrm{H}$ NMR (two rotamers) $\delta 7.4-7.3$ (m, $5 \mathrm{H}, \mathrm{Ar}$), $5.3-5.0(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}\right), 4.0-3.6\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.09(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.1-\mathrm{l} .6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($50^{\circ} \mathrm{C}$) $\delta 7.34-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.20(\mathrm{~d}, J=$ $\left.12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.10\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.01(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{CH}), 3.90(\mathrm{brd}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 3.72(\mathrm{brd}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHO}$), $3.08\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.0-1.8(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \delta 174.7-$ (b) $/ 174.3$ (a) (CO, lactam), 153.6(b)/153.1(a) (CO), 135.7(b)/135.4(a), 128.3, 128.1, 127.9, 127.6 (Ar), 93.7(b)/93.6(a) (C6), 77.1(b)/76.6(a)
$\left(\mathrm{C}_{5}\right), 70.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 67.2(\mathrm{a}) / 67.1(\mathrm{~b})\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 60.8(\mathrm{~b}) / 60.4(\mathrm{a})\left(\mathrm{C}_{2}\right), 60.0$ $\left(\mathrm{C}_{3}\right), 27.0\left(\mathrm{C}_{3^{\prime}}\right), 25.5(\mathrm{~b}) / 25.4(\mathrm{a})\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{C}_{4}\right), 21.5\left(\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(50^{\circ} \mathrm{C}\right) \delta 174.4$ (CO, lactam), 153.4 (CO), 135.9, 128.2, 128.0, $127.7(\mathrm{Ar}), 93.9\left(\mathrm{C}_{6}\right), 76.9\left(\mathrm{C}_{5}\right), 70.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 67.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 60.5\left(\mathrm{C}_{2}\right)$, $60.2\left(\mathrm{C}_{3}\right), 27.0\left(\mathrm{C}_{3^{\prime}}\right), 25.5\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{C}_{4^{\prime}}\right), 21.5\left(\mathrm{CH}_{3}\right)$; IR (neat) ν 1770 (CO, lactam), 1714 (CO, carbamate) cm^{-1}. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 65.44 ; \mathrm{H}, 6.71 ; \mathrm{N}, 8.48$. Found: C, $65.31 ; \mathrm{H}, 6.98 ; \mathrm{N}$, 8.43 .
(2S,5R,6R)-4-(Benzyloxycarbonyl)-6-methoxy-6-methyl-2-(1'-methylethyl)-1,4-diazabicyclo[3.2.0]heptan-7-one (3ab). Carbene complex 2a and imidazoline 1b were allowed to react according to the general procedure to give a 41% yield of product as a mixture of two rotamers: ${ }^{1} \mathrm{H}$ NMR (two rotamers $\mathrm{a} / \mathrm{b} \approx 2 / 1$) $\delta 7.4-7.3(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.27-5.03$ (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}$), 3.9-3.65 (m, $2 \mathrm{H}, \mathrm{CHN}, \mathrm{CH}_{2} \mathrm{~N}$), 3.53(a+b) (dd, $\left.J_{1}=7.5 \mathrm{~Hz}, J_{2}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.50(\mathrm{~b}) / 3.34(\mathrm{a})(\mathrm{s}, 3 \mathrm{H}$, OCH_{3}), 1.67 (oct, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}$), 1.31 (b) $/ 1.20$ (a) $(\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.94\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;$ ${ }^{1} \mathrm{H}$ NMR $\left(50^{\circ} \mathrm{C}\right) \delta 7.35-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.21(\mathrm{~d}, J=12.3 \mathrm{~Hz}, \mathrm{l}$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.15\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.80$ (ddd, $J_{1}=J_{2}=7.2 \mathrm{~Hz}, J_{3}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}(2)$), 3.74 (br d, $J=11.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{HC}(3)), 3.52$ (dd, $\left.J_{1}=7.5 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}(3)\right)$, $3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.66\left(\mathrm{oct}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 1.23(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR $\delta 176.8$ (b) $/ 176.5$ (a) (CO, lactam), 153.4 (CO), 135.8 , 128.7, 128.6, 128.4, 128.3, 128.1, 128.0 (Ar), 91.1 (C6), 75.7(b)/75.1(a) $\left(\mathrm{C}_{5}\right), 69.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.7(\mathrm{~b}) / 61.1(\mathrm{a})\left(\mathrm{C}_{2}\right), 53.6\left(\mathrm{OCH}_{3}\right), 50.9(\mathrm{a}) / 50.6(\mathrm{~b})$ $\left(\mathrm{C}_{3}\right), 31.1\left(\mathrm{CHMe}_{2}\right), 19.1\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right), 13.8(\mathrm{a}) / 13.6(\mathrm{~b})\left(\mathrm{CH}_{3}\right) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(50{ }^{\circ} \mathrm{C}\right) \delta 176.5(\mathrm{CO}$, lactam), $153.7(\mathrm{CO}), 136.1,128.5$, $128.2,128.0(\mathrm{Ar}), 91.3\left(\mathrm{C}_{6}\right), 75.5\left(\mathrm{C}_{5}\right), 67.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.5\left(\mathrm{C}_{2}\right), 53.4$ $\left(\mathrm{OCH}_{3}\right), 50.8\left(\mathrm{C}_{3}\right), 31.1\left(\mathrm{CHMe}_{2}\right), 18.9\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right)$; IR (neat) $\nu 1777$ (CO, lactam), 1713 (CO, carbamate) cm^{-1}. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 65.04 ; \mathrm{H}, 7.28 ; \mathrm{N}, 8.43$. Found: $\mathrm{C}, 64.89$; H, 7.17; N, 8.50 .
(2S,5R,6R)-4-(Benzyloxycarbonyl)-6-(benzyloxy)-6-methyl-2-(1'-methylethyl)-1,4-diazabicyclo[3.2.0]heptan-7-one (3bb). Carbene complex $\mathbf{2 b}$ and imidazoline $\mathbf{1 b}$ were allowed to react according to the general procedure to give a 54% yield of product as a mixture of two rotamers: ${ }^{1} \mathrm{H}$ NMR (two rotamers $\mathrm{a} / \mathrm{b} \approx 3 / 1$) $\delta 7.38-7.27$ (m, $10 \mathrm{H}, \mathrm{ArH}$), $5.26-5.06\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}\right), 4.78-4.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.85$ (ddd, $\left.J_{1}=J_{2}=7.2 \mathrm{~Hz}, J_{3}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}\right), 3.83-3.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 3.55 (dd, $J_{1}=7.4 \mathrm{~Hz}, J_{2}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 1.66 (oct, $J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHMe}_{2}$), 1.40 (b) $/ 1.31$ (a) ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 0.94 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $0.92\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(50^{\circ} \mathrm{C}\right) \delta 7.36-7.20$ $(\mathrm{m}, 10 \mathrm{H}, \operatorname{ArH}), 5.20\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.14(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 5.08 (s, $1 \mathrm{H}, \mathrm{CH}$), 4.66 (br s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.82 (ddd, $\left.J_{1}=J_{2}=7.2 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}(2)\right), 3.74(\mathrm{br} \mathrm{d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{HC}(3)), 3.52$ (dd, $\left.J_{1}=7.5 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}(3)\right), 1.64$ (oct, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}$), $1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 176.8(\mathrm{~b}) /$ 176.4(a) (CO, lactam), 153.3 (CO), 137.5, 135.9(b)/135.6(a), 128.5, $128.3,128.0,127.7,127.4,127.0(\mathrm{Ar}), 91.0\left(\mathrm{C}_{6}\right), 76.1(\mathrm{~b}) / 75.5(\mathrm{a})\left(\mathrm{C}_{5}\right)$, $68.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.7(\mathrm{~b}) / 61.2(\mathrm{a})\left(\mathrm{C}_{2}\right), 50.8(\mathrm{a}) / 50.6(\mathrm{~b})$ $\left(\mathrm{C}_{3}\right), 31.1\left(\mathrm{CHMe}_{2}\right), 19.0\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right), 14.7(\mathrm{a}) / 14.3(\mathrm{~b})\left(\mathrm{CH}_{3}\right) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(50^{\circ} \mathrm{C}\right) \delta 176.3(\mathrm{CO}$, lactam), $153.5(\mathrm{CO}), 137.8,135.9$, $128.5,128.2,127.9,127.6,127.3$ (Ar), $91.2\left(\mathrm{C}_{6}\right), 75.9\left(\mathrm{C}_{5}\right), 68.3$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 67.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.5\left(\mathrm{C}_{2}\right), 50.7\left(\mathrm{C}_{3}\right), 31.1\left(\mathrm{CHMe}_{2}\right), 18.9$ $\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right)$; IR (neat) $\nu 1778(\mathrm{CO}$, lactam), 1715 (CO, carbamate) cm^{-1}. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 70.57 ; \mathrm{H}, 6.91$; $\mathrm{N}, 6.86$. Found: $\mathrm{C}, 70.40 ; \mathrm{H}, 6.82 ; \mathrm{N}, 6.85$.
(2S,5R,6R)-4-(Benzyloxycarbonyl)-2-(1'-methylethyl)-1,4-diazabi-cyclo[3.2.0]heptan-7-one-6-spiro-2'-tetrahydrofuran (3cb). Carbene complex 2c and imidazoline 1b were allowed to react according to the general procedure to give a 69% yield of product as a mixture of two rotamers: ${ }^{1} \mathrm{H}$ NMR (two rotamers $\mathrm{a} / \mathrm{b} \approx 5 / 1$) $\delta 7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}$), $5.30-4.96\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}\right), 4.07-3.46\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{HC}(2)\right.$, $\left.\mathrm{H}_{2} \mathrm{C}(3)\right), 2.05-1.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.64(\mathrm{oct}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, CHMe_{2}), $0.93\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(50^{\circ} \mathrm{C}\right) 7.35-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.21(\mathrm{~d}, J=12.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.12\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.96(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 3.95-3.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.8-3.7\left(\mathrm{~m}, 3 \mathrm{H}, 1 \mathrm{CH}_{2} \mathrm{O}, 1 \mathrm{CH}_{2} \mathrm{~N}\right.$, CHN), 3.48 (dd, $J_{1}=7.5 \mathrm{~Hz}, J_{2}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $1.95-1.80(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.64 (oct, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}$), $0.92(\mathrm{~d}, J=6.7$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 178.1-$ (b) $/ 177.7$ (a) (CO, lactam), 153.9 (b)/153.3(a) (CO), 135.9 (b)/135.5(a), 128.5, 128.4, $128.2,127.8$ (Ar), 94.2 (C6), 78.4(b)/77.7(a) (C5), 70.6 $\left(\mathrm{CH}_{2} \mathrm{O}\right), 67.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.7(\mathrm{~b}) / 61.1(\mathrm{a})\left(\mathrm{C}_{2}\right), 50.8(\mathrm{a}) / 50.6(\mathrm{~b})\left(\mathrm{C}_{3}\right), 31.0$ $\left(\mathrm{CHMe}_{2}\right), 27.5\left(\mathrm{C}_{3}\right), 25.6(\mathrm{~b}) / 25.3$ (a) $\left(\mathrm{C}_{4}\right), 19.0\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(50^{\circ} \mathrm{C}\right) \delta 177.7(\mathrm{CO}$, lactam), $153.6(\mathrm{CO}), 135.9,128.4,128.2$, $127.9(\mathrm{Ar}), 94.5\left(\mathrm{C}_{6}\right), 78.0\left(\mathrm{C}_{5}\right), 70.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 67.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.5\left(\mathrm{C}_{2}\right)$, $50.7\left(\mathrm{C}_{3}\right), 31.0\left(\mathrm{CHMe}_{2}\right), 27.5\left(\mathrm{C}_{3}\right), 25.3\left(\mathrm{C}_{4}\right), 18.8\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right) ;$

IR (neat) $\nu 1781$ (CO, lactam), 1714 (CO, carbamate) cm^{-1}. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 66.26 ; \mathrm{H}, 7.02 ; \mathrm{N}, 8.13$. Found: $\mathrm{C}, 66.51$; H, 6.98; N, 8.40.

General Procedure for the Deprotection of the \boldsymbol{N}-Benzyloxycarbonyl Azapenams. The azapenam was dissolved in methanol, and a few drops of triethylamine were added. Hydrogenation with palladium on carbon at 45 psi of H_{2} for 4 min , filtration through Celite, and evaporation of the solvent gave the product. If necessary, it was purified by chromatography on silica gel (EtOAc). Crude yields were, in general, quantitative, and after chromatography about 75-95\%. (Note: Hydrogenation times varied with the specific bottle of catalyst used, with older, previously opened bottles giving slower reaction.)
($5 S^{*}, 6 R^{*}$)-6-Methoxy-2,2,6-trimethyl-1,4-diazabicyclo 3.2 .0]heptan-7-one (4aa). Azapenam 3aa ($103 \mathrm{mg}, 0.31 \mathrm{mmol}$) and 50 mg of 5% Pd / C were allowed to react according to the general procedure to give $56 \mathrm{mg}(0.30 \mathrm{mmol}, 98 \%)$ of product: $\mathrm{mp} 85-87^{\circ} \mathrm{C}$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\delta 4.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.07(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.63\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $2.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}), 1.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6}-\mathrm{CH}_{3}\right), 1.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.6(\mathrm{CO}), 90.0\left(\mathrm{C}_{6}\right), 77.3\left(\mathrm{C}_{5}\right), 61.9\left(\mathrm{C}_{3}\right), 60.9\left(\mathrm{C}_{2}\right), 53.4$ $\left(\mathrm{OCH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right)$; IR (KBr) $\nu 3363$ (NH), $1745(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 58.67 ; \mathrm{H}, 8.75$; N, 15.21. Found: C, 58.72; H, 8.92; N, 15.20.
(5S*,6R*)-6-(Benzyloxy)-2,2,6-trimethyl-1,4-diazabicyclo[3.2.0]hep-tan-7-one (4ba). Azapenam 3ba ($291 \mathrm{mg}, 0.73 \mathrm{mmol}$) and 145 mg of $5 \% \mathrm{Pd} / \mathrm{C}$ were allowed to react according to the general procedure to give 184 mg ($0.71 \mathrm{mmol}, 97 \%$) of product: $\mathrm{mp} 87-88^{\circ} \mathrm{C}$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.73(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.67\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 3.07 (d, J $\left.=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.65\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.29(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6)-\mathrm{CH}_{3}\right), 1.11(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.6(\mathrm{CO}), 137.9,128.4,127.7(\mathrm{Ar}), 89.9\left(\mathrm{C}_{6}\right), 78.1$ $\left(\mathrm{C}_{5}\right), 68.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 62.0\left(\mathrm{C}_{3}\right), 61.0\left(\mathrm{C}_{2}\right), 24.9\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 14.9$ $\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu 3340(\mathrm{NH}), 1738(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $69.21 ; \mathrm{H}, 7.74 ; \mathrm{N}, 10.76$. Found: C, 69.30; H, 7.71; N, 10.71 .
(5S*,6R*)-2,2-Dimethyl-1,4-diazabicyclo[3.2.0]heptan-7-one-6-spiro-2'-tetrahydrofuran (4ca). Azapenam 3ca ($322 \mathrm{mg}, 0.97 \mathrm{mmol}$) and 160 mg of $5 \% \mathrm{Pd} / \mathrm{C}$ were allowed to react according to the general procedure to give $188 \mathrm{mg}(0.96 \mathrm{mmol}, 99 \%)$ of product: $\mathrm{mp} 76-78^{\circ} \mathrm{C}$ (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), ${ }^{1} \mathrm{H}$ NMR $\delta 4.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.05-3.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.04$ $\left(\mathrm{d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.52\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.50-2.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}\right.$ and $\left.1 \mathrm{CH}_{2}\right), 2.10-1.85\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.55$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 177.3(\mathrm{CO}), 93.4\left(\mathrm{C}_{6}\right)$, $80.0\left(\mathrm{C}_{5}\right), 70.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 61.8\left(\mathrm{C}_{3}\right), 61.2\left(\mathrm{C}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right)$, $24.6\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) 3345(\mathrm{NH}), 1748(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 61.20 ; \mathrm{H}, 8.22 ; \mathrm{N}, 14.27$. Found: C, 61.13; H, 8.42; N, 14.26.
(2S,5R,6R)-6-Methoxy-6-methyl-2-(1^{\prime}-methylethyl)-1,4-diazabicyclo[3.2 .0$]$ heptan-7-one (4 ab). Azapenam 3 ab ($143 \mathrm{mg}, 0.43 \mathrm{mmol}$) and 70 mg of $5 \% \mathrm{Pd} / \mathrm{C}$ were allowed to react according to the general procedure to give $89 \mathrm{mg}(0.43 \mathrm{mmol}, 98 \%)$ of product: $[\alpha]^{25}{ }_{\mathrm{D}}+125.6^{\circ}$ (c $\left.=2.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.54$ (ddd, $J_{1}=3.7 \mathrm{~Hz}$, $\left.J_{2}=6.5 \mathrm{~Hz}, J_{3}=8.1 \mathrm{~Hz}, \mathrm{CHN}\right), 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.15\left(\mathrm{dd}, J_{1}=\right.$ $\left.3.7 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.07\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 1.55\left(\mathrm{~d}\right.$ of hept, $J_{1}=7.9 \mathrm{~Hz}, J_{2}=$ $\left.6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.92\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 178.5(\mathrm{CO}), 89.8$ $\left(\mathrm{C}_{6}\right), 77.7\left(\mathrm{C}_{5}\right), 63.1\left(\mathrm{C}_{2}\right), 53.6\left(\mathrm{OCH}_{3}\right), 52.1\left(\mathrm{C}_{3}\right), 30.3\left(\mathrm{CMe}_{2}\right), 19.6$ $\left(\mathrm{CH}_{3}\right), 19.3\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right)$; IR (neat) $\nu 3354(\mathrm{NH}), 1756(\mathrm{CO})$ cm^{-1}. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 60.58 ; \mathrm{H}, 9.15 ; \mathrm{N}, 14.13$. Found: C, 60.40; H, 9.11; N, 13.97.
(2S,5R,6R)-6-(Benzyloxy)-6-methyl-2-(1'-methylethyl)-1,4-diazabicyclo 3.2 .0$]$ heptan- 7 -one (4 bb). Azapenam 3 bb ($207 \mathrm{mg}, 0.51 \mathrm{mmol}$) and 110 mg of $5 \% \mathrm{Pd} / \mathrm{C}$ were allowed to react according to the general procedure to give $139 \mathrm{mg}(0.51 \mathrm{mmol},>98 \%)$ of product: $[\alpha]^{25} \mathrm{D}+99.8^{\circ}$ $\left(c=3.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}$), $4.76\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.70\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.57\left(\mathrm{ddd}, J_{1}=3.7 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, J_{3}=7.9 \mathrm{~Hz}\right.$, CHN), $3.16\left(\mathrm{dd}, J_{1}=3.7 \mathrm{~Hz}, J_{2}=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.08\left(\mathrm{dd}, J_{1}\right.$ $=6.4 \mathrm{~Hz}, J_{2}=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 1.87 (br s, $1 \mathrm{H}, \mathrm{NH}$), 1.55 (oct, $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \delta 178.5(\mathrm{CO})$, 137.9, 128.4, $127.7(\mathrm{Ar}), 89.7\left(\mathrm{C}_{6}\right), 78.3\left(\mathrm{C}_{5}\right), 68.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 63.1\left(\mathrm{C}_{2}\right)$, $52.2\left(\mathrm{C}_{3}\right), 30.4\left(\mathrm{CMe}_{2}\right), 19.6\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{3}\right), 15.1\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right)$, IR (neat) $\nu 3354(\mathrm{NH}), 1760(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $70.04, \mathrm{H}, 8.08 ; \mathrm{N}, 10.21$. Found: C, $69.82 ; \mathrm{H}, 8.10 ; \mathrm{N}, 10.05$.
(2S,5R,6R)-2-(1'-Methylethyl)-1,4-diazabicyclo[3.2.0]heptan-7-one-6-spiro-2'-tetrahydrofuran (4cb). Azapenam 3cb ($227 \mathrm{mg}, 0.66 \mathrm{mmol}$) and 112 mg of $5 \% \mathrm{Pd} / \mathrm{C}$ were allowed to react according to the general
procedure to give $142 \mathrm{mg}(0.66 \mathrm{mmol},>98 \%)$ of product: $[\alpha]^{25}{ }_{D}$ $+125.9^{\circ}\left(c=3.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.03-3.88$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.52\left(\mathrm{ddd}, J_{1}=3.5 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, J_{3}=8.1 \mathrm{~Hz}\right.$, CHN), 3.13 (dd, $J_{1}=3.5 \mathrm{~Hz}, J_{2}=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.98\left(\mathrm{dd}, J_{1}\right.$ $\left.=6.5 \mathrm{~Hz}, J_{2}=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.27-2.16\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{CH}_{2}\right)$, 2.06-1.83 (m, $4 \mathrm{H}, 3 \mathrm{CH}_{2} \mathrm{CH}_{2}$ and NH), 1.53 (d of hept, $J_{1}=6.7 \mathrm{~Hz}$, $\left.J_{2}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 0.98\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91(\mathrm{~d}$, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 180.1(\mathrm{CO}), 93.3\left(\mathrm{C}_{6}\right), 80.0\left(\mathrm{C}_{5}\right)$, $70.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 63.5\left(\mathrm{C}_{2}\right), 52.0\left(\mathrm{C}_{3}\right), 30.3\left(\mathrm{CMe}_{2}\right), 27.5\left(\mathrm{C}_{3}\right), 25.7\left(\mathrm{C}_{4}\right)$, $19.5\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{3}\right)$; IR (neat) $\nu 3346(\mathrm{NH}), 1760(\mathrm{CO}) \mathrm{cm}^{-1}$. Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 62.83 ; \mathrm{H}, 8.63 ; \mathrm{N}, 13.32$. Found: $\mathrm{C}, 62.69$; H, 8.53; N, 13.13.

General Procedure for the Transformation of Azapenams to Hexahydrodiazepinones. The N-benzyloxycarbonyl azapenams and 1.1 equiv of racemic camphorsulfonic acid were dissolved in THF and hydrogenated at 45 psi of H_{2} with palladium on carbon at the specified temperature and reaction time. The reaction mixture was filtered through Celite, and the solvent was evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was washed with 5% aqueous NaHCO 3 . Drying over MgSO_{4} and evaporation of the solvent gave the product. If necessary, they were purified by chromatography on silica gel with $4 / 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ or $2 / 1 \mathrm{EtOAc} / \mathrm{MeOH}$.

Hexahydro-3,3,6-trimethyl-6-methoxy-5H-1,4-diazepin-5-one (5aa). N-Benzyloxycarbonyl azapenam 3aa ($53 \mathrm{mg}, 0.16 \mathrm{mmol}$), 40 mg of (\pm)-camphorsulfonic acid, and $5 \% \mathrm{Pd} / \mathrm{C}(26 \mathrm{mg})$ were allowed to react according to the general procedure at room temperature for 4.5 h to give 22 mg ($0.12 \mathrm{mmol}, 71 \%$) of the product: $\mathrm{mp} 153-154^{\circ} \mathrm{C}$ (hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\delta 5.64\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}\right.$), $3.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.04$ (d, $\left.J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.88\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.81$ (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.75\left(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.82$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.0(\mathrm{CO}), 80.7\left(\mathrm{C}_{6}\right), 60.5\left(\mathrm{CH}_{2}\right), 55.9\left(\mathrm{CH}_{2}\right), 54.3$ $\left(\mathrm{C}_{3}\right), 51.2\left(\mathrm{OCH}_{3}\right), 30.2\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu$ $1643(\mathrm{CO}) \mathrm{cm}^{-1}$; MS $186\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 58.04; H, 9.74; N, 15.04. Found: C, 58.14; H, 9.86; N, 14.97.

Hexahydro-3,3,6-trimethyl-6-(phenylmethoxy)-5H-1,4-diazepin-5-one (5ba). N-Benzyloxycarbonyl azapenam 3ba ($67 \mathrm{mg}, 0.17 \mathrm{mmol}$), 43 mg of CSA, and $5 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg})$ were allowed to react according to the general procedure at $100^{\circ} \mathrm{C}$ for 10 min to give $24 \mathrm{mg}(0.09 \mathrm{mmol}, 54 \%)$ of the product: mp $117-120^{\circ} \mathrm{C}$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.35-7.25$ (m, $5 \mathrm{H}, \mathrm{ArH}), 5.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}), 4.65(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.31\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.17(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.86\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.82(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.77 (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 2.36 (br s, $1 \mathrm{H}, \mathrm{NH}$), $1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.9(\mathrm{CO}), 138.1,128.3,127.7,127.5(\mathrm{Ar}), 80.9\left(\mathrm{C}_{6}\right), 65.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $60.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 56.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 54.6\left(\mathrm{C}_{3}\right), 30.1\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{3}\right), 20.6$ $\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu 1644(\mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{MS} 171\left(\mathrm{M}^{+}-91, \mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Ph}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 68.67; H, 8.45; N, 10.68. Found: C, 68.47; H, 8.34; N, 10.58 .

Hexahydro-3,3-dimethyl-5H-1,4-diazepin-5-one-6-spiro-2'-tetrahydrofuran (5ca). N-Benzyloxycarbonyl azapenam 3ca ($55 \mathrm{mg}, 0.17$ $\mathrm{mmol}), 40 \mathrm{mg}$ of CSA, and $5 \% \mathrm{Pd} / \mathrm{C}(26 \mathrm{mg})$ were allowed to react according to the general procedure at room temperature for 1.25 h to give 20 mg ($0.10 \mathrm{mmol}, 61 \%$) of the product: $\mathrm{mp} 102-103^{\circ} \mathrm{C}$ (hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\delta 6.23$ (br s, $1 \mathrm{H}, \mathrm{CONH}$), 4.85 (br s, $1 \mathrm{H}, \mathrm{NH}$), 4.0-3.8 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.05-2.8 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$), 2.7-2.6 (m, 1 $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.1-1.8\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.66-1.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.2(\mathrm{CO}), 86.0$ $\left(\mathrm{C}_{6}\right), 68.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 59.3\left(\mathrm{CH}_{2} \mathrm{~N}\right), 54.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 53.9\left(\mathrm{C}_{3}\right), 33.4\left(\mathrm{C}_{3^{\prime}}\right)$, $29.2\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{C}_{4}\right) ;$ IR $(\mathrm{KBr}) \nu 1642(\mathrm{CO}) \mathrm{cm}^{-1}$; MS $198\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 60.58 ; \mathrm{H}, 9.15 ; \mathrm{N}, 14.13$. Found: C, 60.38; H, 9.17; N, 14.07.
(3S,6R)-Hexahydro-6-methyl-3-(1'-methylethyl)-6-methoxy-5H-1,4-diazepin-5-one (5ab). N-Benzyloxycarbonyl azapenam 3 ab ($103 \mathrm{mg}, 0.31$ $\mathrm{mmol}), 79 \mathrm{mg}$ of CSA, and $10 \% \mathrm{Pd} / \mathrm{C}(25 \mathrm{mg})$ were allowed to react according to the general procedure at room temperature overnight and at $70^{\circ} \mathrm{C}$ for 0.5 h to give $44 \mathrm{mg}(0.22 \mathrm{mmol}, 71 \%)$ of the product as a waxy solid: $[\alpha]^{25} \mathrm{D}-11.0^{\circ}\left(c=2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.36(\mathrm{br} \mathrm{s}, 1$ $\mathrm{H}, \mathrm{CONH}), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.12\left(\mathrm{dd}, J_{1}=5.6 \mathrm{~Hz}, J_{2}=14.3 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{HC}_{2}\right), 3.05\left(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{7}\right), 2.90\left(\mathrm{dd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}\right.$ $\left.=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{2}\right), 2.80\left(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{7}\right), 2.77$ (ddd, J_{1} $=2.4 \mathrm{~Hz}, J_{2}=5.6 \mathrm{~Hz}, J_{3}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{3}$), 2.58 (br s, $1 \mathrm{H}, \mathrm{NH}$), 2.29 (d of hept, $\left.J_{1}=6.7 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 1.33(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.01\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 175.7(\mathrm{CO}), 80.6\left(\mathrm{C}_{6}\right), 60.5(\mathrm{CHN}), 54.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 51.7$ $\left(\mathrm{OCH}_{3}\right), 50.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 29.4\left(\mathrm{CHMe}_{2}\right), 20.0\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right), 19.4$ $\left(\mathrm{CH}_{3}\right) ;$ IR $(\mathrm{KBr}) \nu 1656(\mathrm{CO}) \mathrm{cm}^{-1}$; MS $200\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $59.97 ; \mathrm{H}, 10.06 ; \mathrm{N}, 13.99$. Found: C, $59.95 ; \mathrm{H}, 9.89$; N, 13.76.
(3S,6R)-Hexahydro-6-methyl-3-(1'-methylethyl)-6-hydroxy-5H-1,4-diazepin-5-one (5bb). N-Benzyloxycarbonyl azapenam 3bb ($78 \mathrm{mg}, 0.19$ $\mathrm{mmol}), 49 \mathrm{mg}$ of CSA, and $10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$ were allowed to react according to the general procedure at room temperature for 2.5 days to give $25 \mathrm{mg}(0.13 \mathrm{mmol}, 69 \%)$ of the product as a waxy solid: $[\alpha]^{25} \mathrm{D}$ $+6.0^{\circ}\left(c=1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}), 4.53(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.42-3.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}_{3}\right), 3.10\left(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{2}\right)$, $2.94\left(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{7}\right), 2.79\left(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{7}\right), 2.55$ (dd, $\left.J_{1}=13.3 \mathrm{~Hz}, J_{2}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{2}\right), 1.82\left(\mathrm{~d}\right.$ of hept, $J_{1}=6.9 \mathrm{~Hz}$, $J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}$), $1.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.99\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 179.6(\mathrm{CO}), 74.2\left(\mathrm{C}_{6}\right), 60.6(\mathrm{CHN}), 55.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 52.4(\mathrm{C}-$ $\left.\mathrm{H}_{2} \mathrm{~N}\right), 31.5\left(\mathrm{CHMe}_{2}\right), 23.0\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right)$; IR (KBr) $\nu 1646(\mathrm{CO}) \mathrm{cm}^{-1}$; MS $186\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 58.04; H, 9.74; N, 15.04. Found: C, 58.28; H, 9.60; N, 14.94.
(3S,6R)-Hexahydro-3-(1^{\prime}-methylethyl)-5H-1,4-diazepin-5-one-6-spiro-2'-tetrahydrofuran (5cb). N-Benzyloxycarbonyl azapenam 3cb (248 $\mathrm{mg}, 0.72 \mathrm{mmol}), 186 \mathrm{mg}$ of CSA, and $10 \% \mathrm{Pd} / \mathrm{C}(60 \mathrm{mg})$ were allowed to react according to the general procedure at room temperature overnight at $60^{\circ} \mathrm{C}$ for 0.5 h to give $90 \mathrm{mg}(0.42 \mathrm{mmol}, 59 \%)$ of the product as a waxy solid: $[\alpha]^{25} \mathrm{D}+28.8^{\circ}\left(c=1.79, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.82$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}$), $4.05\left(\mathrm{ddd}, J_{1}=J_{2}=6.9 \mathrm{~Hz}, J_{3}=8.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.94 (ddd, $J_{1}=J_{2}=6.5 \mathrm{~Hz}, J_{3}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $3.25-3.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}_{3}\right), 3.03\left(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{7}\right), 3.02$ (dd, $\left.J_{1}=13.3 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{2}\right), 2.83\left(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{7}\right)$, $2.63\left(\mathrm{dd}, J_{1}=13.3 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}_{2}\right), 2.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, 2.22-2.17 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$ furan), $2.00-1.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ furan and $\left.\mathrm{CHMe}_{2}\right), 0.97\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 177.2(\mathrm{CO}), 86.5\left(\mathrm{C}_{6}\right), 68.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 59.9(\mathrm{CHN})$, $53.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 51.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 32.3\left(\mathrm{C}_{3}\right), 31.0\left(\mathrm{CHMe}_{2}\right), 25.2\left(\mathrm{C}_{4}\right), 18.4$ $\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right)$; IR (KBr) $\nu 1660(\mathrm{CO}) \mathrm{cm}^{-1}$; MS $212\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 62.24; $\mathrm{H}, 9.50 ; \mathrm{N}, 13.20$. Found: C, 62.08 ; H, 9.60; N, 12.92.

General Procedure for the Dimerization of Azapenams to Dioxocyclams. The azapenam and a catalytic amount (about 25 mg) of racemic camphorsulfonic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were stirred at the specified temperature for the reaction time. The solution was washed with aqueous $5 \% \mathrm{NaH}$ CO_{3} and dried over MgSO_{4}, and the solvent was evaporated.
($6 R^{*}, 13 S^{*}$) $-3,3,6,10,10,13$-Hexamethyl-6,13-dimethoxy-1,4,8,11-tetraazacyclotetradeca- $7(E), 14(E)$-diene- 5,12 -dione (6aa). Azapenam 4 aa ($56 \mathrm{mg}, 0.30 \mathrm{mmol}$) was allowed to react according to the general procedure for 2.5 h at room temperature to give 54 mg (96%) of product as one single diastereoisomer (meso compound) but as two conformers in solution, $\mathrm{a} / \mathrm{b} \approx 1 / 1 ; \mathrm{mp} 222-223^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$. Conformer a: ${ }^{1} \mathrm{H}$ NMR $\delta 7.57(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCN}), 7.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH})$, $3.98\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.30\left(\mathrm{dd}, J_{1}=1.4 \mathrm{~Hz}, J_{2}=11.9 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.46(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.6(\mathrm{CO}), 166.9(\mathrm{C}=\mathrm{N}), 81.1$ $\left(\mathrm{C}_{6.13}\right), 67.8\left(\mathrm{CH}_{2}\right), 53.8\left(\mathrm{C}_{3,10}\right), 52.7,26.0\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 20.6$ $\left(\mathrm{CH}_{3}\right)$. Conformer b: ${ }^{1} \mathrm{H}$ NMR $\delta 7.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}), 7.12(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{CONH}), 4.00\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.45\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}\right.$, $\left.J_{2}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.2(\mathrm{CO}), 167.2$ $(\mathrm{C}=\mathrm{N}), 81.6\left(\mathrm{C}_{6,13}\right), 66.7\left(\mathrm{CH}_{2}\right), 54.2\left(\mathrm{C}_{3.10}\right), 52.2\left(\mathrm{OCH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right)$, $25.3\left(\mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu 1686(\mathrm{CO}), 1663(\mathrm{C}=\mathrm{N}), 1524$ cm^{-1}; MS $368\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}$: $\mathrm{C}, 58.67$; $\mathrm{H}, 8.75$; $\mathrm{N}, 15.21$. Found: C, $58.46 ; \mathrm{H}, 8.50 ; \mathrm{N}, 15.14$.
($6 R^{*}, 13 S^{*}$)-3,3,6,10,10,13-Hexamethyl-6,13-bis(phenylmethoxy)-1,4,8,11-tetraazacy clotetradeca-7(E),14(E)-diene-5,12-dione (6ba). Azapenam 4ba ($56 \mathrm{mg}, 0.30 \mathrm{mmol}$) was allowed to react in a sealed tube at $80^{\circ} \mathrm{C}$ for 2 h according to the general procedure to give $95 \mathrm{mg}(90 \%)$ of product as a single diastereoisomer (meso compound) but as two conformers in solution, $\mathrm{a} / \mathrm{b} \approx 1 / 1, \mathrm{mp} 201-202^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$. Conformer a: ${ }^{1} \mathrm{H}$ NMR $\delta 7.85$ (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), 7.72 (s, $1 \mathrm{H}, \mathrm{CONH}$), $7.4-7.2(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.75\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.39(\mathrm{~d}, J$ $\left.=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.93\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.26(\mathrm{dd}$, $\left.J_{1}=0.6 \mathrm{~Hz}, J_{2}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.8(\mathrm{CO}), 167.5(\mathrm{C}=\mathrm{N})$, 138.3, 128.3, $127.7(\mathrm{Ar}), 81.1\left(\mathrm{C}_{6.13}\right), 68.3,67.5\left(\mathrm{CH}_{2} \mathrm{~N}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, $53.7\left(\mathrm{C}_{3.10}\right), 25.6\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right)$. Conformer b: ${ }^{1} \mathrm{H}$ NMR $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}), 7.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COHN}), 7.42-7.2(\mathrm{ArH})$, $4.57\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.35\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right)$, $4.02\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.40\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=11.8 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 169.4(\mathrm{CO}), 166.8(\mathrm{C}=\mathrm{N}), 137.9,128.4,127.5(\mathrm{Ar}), 82.1$ $\left(\mathrm{C}_{6.13}\right), 66.9,66.8\left(\mathrm{CH}_{2} \mathrm{~N}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 54.2\left(\mathrm{C}_{3.10}\right), 26.5\left(\mathrm{CH}_{3}\right), 25.2$, $19.7\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu 1694(\mathrm{CO}), 1657(\mathrm{C}=\mathrm{N}), 1512 \mathrm{~cm}^{-1}$; MS 520 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 69.21 ; \mathrm{H}, 7.74 ; \mathrm{N}, 10.76$. Found: C, 69.09; H, 7.51; N, 10.82 .
($6 R^{*}, 13 S^{*}$)-3,3,10,10-Tetramethyl-6,13-bis(oxypropylene)-1,4,8,11-tetraazacyclotetradeca-7(E),14(E)-diene-5,12-dione (6ca). Azapenam $4 \mathrm{ca}(157 \mathrm{mg}, 0.80 \mathrm{mmol}$) was allowed to react according to the general procedure at room temperature overnight to give $129 \mathrm{mg}(82 \%)$ of product as a single diastereoisomer (meso compound) but as two conformers in solution, $a / b \approx 5 / 1$, $\mathrm{mp} 246-247^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Conformer a: ${ }^{1} \mathrm{H}$ NMR $\delta 7.68(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 6.61(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CONH}$), $4.2-3.8\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$ and $1 \mathrm{CH}_{2} \mathrm{~N}$), $3.34\left(\mathrm{dd}, J_{1}=1.7\right.$ $\left.\mathrm{Hz}, J_{2}=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.5-2.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.0-1.8(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \delta$ $170.5(\mathrm{CO}), 165.0(\mathrm{C}=\mathrm{N}), 87.9\left(\mathrm{C}_{6.13}\right), 69.6\left(\mathrm{CH}_{2}\right), 66.2\left(\mathrm{CH}_{2}\right), 53.8$ $\left(\mathrm{C}_{3,10}\right), 34.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{OCH}_{2} \mathrm{C}-\right.$ $\mathrm{H}_{2} \mathrm{C}_{2}$). Conformer $\mathrm{b}:{ }^{1} \mathrm{H}$ NMR $\delta 7.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}), 6.88(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{CONH}$), $4.2-3.8(\mathrm{~m}, 3 \mathrm{H}), 3.41\left(\mathrm{dd}, J_{1}=1.1 \mathrm{~Hz}, J_{2}=12.0 \mathrm{~Hz}, 1\right.$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.5-2.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.0-1.8\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.43$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.1$ (CO), 166.4 $(\mathrm{C}=\mathrm{N}), 87.4\left(\mathrm{C}_{6.13}\right), 69.2\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 53.9\left(\mathrm{C}_{3.10}\right), 33.6(\mathrm{OC}-$ $\left.\mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{3}\right), 25.6,25.3\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu 1684(\mathrm{CO})$, $1659(\mathrm{C}=\mathrm{N}), 1535 \mathrm{~cm}^{-1}$; MS $392\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $61.20 ; \mathrm{H}, 8.22 ; \mathrm{N}, 14.27$. Found: C, $61.46 ; \mathrm{H}, 7.96 ; \mathrm{N}, 14.44$.
($3 S, 6 R, 10 S, 13 R$)-6,13-Dimethyl-3,10-bis (1^{\prime}-methylethyl)-6,13-di-methoxy-1,4,8,11-tetraazacyclotetradeca-7 (E), $14(E)$-diene-5,12-dione ($6 a b$). Azapenam $4 a b(60 \mathrm{mg}, 0.30 \mathrm{mmol}$) was allowed to react according to the general procedure at $80-100^{\circ} \mathrm{C}$ for 1.5 h to give 57 mg (95\%) of product: $\mathrm{mp} 161-163^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) ;[\alpha]^{25}{ }_{\mathrm{D}}-38.8^{\circ}(\mathrm{c}$ $\left.=1.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 8.00(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}), 7.62$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 3.97-3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 3.80\left(\mathrm{ddd}, J_{1}=1.4 \mathrm{~Hz}\right.$, $\left.J_{2}=6.3 \mathrm{~Hz}, J_{3}=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.36\left(\mathrm{dd}, J_{1}=3.7 \mathrm{~Hz}, J_{2}=\right.$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.90($ oct, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHMe}_{2}\right), 1.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.95(\mathrm{~d}$, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.8(\mathrm{CO}), 167.2(\mathrm{C}=\mathrm{N}), 81.0$ $\left(\mathrm{C}_{6.13}\right), 61.7\left(\mathrm{CH}_{2}\right), 54.6(\mathrm{CHN}), 53.1\left(\mathrm{OCH}_{3}\right), 30.7\left(\mathrm{C}_{3.10}\right), 21.2\left(\mathrm{CH}_{3}\right)$, $19.6\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right)$; IR (KBr) $\nu 1684(\mathrm{CO}), 1659(\mathrm{C}=\mathrm{N}), 1522$ $\mathrm{cm}^{-1} ; \mathrm{MS} 396\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 60.58 ; \mathrm{H}, 9.15$; N, 14.13. Found: C, 60.33; H, 8.98; N, 13.92 .
($3 S, 6 R, 10 S, 13 R$)-6,13-Dimethyl-3,10-bis(1 '-methylethyl)-6,13-bis-(phenylmethoxy)-1,4,8,11-tetraazacyclotetradeca-7(E),14(E)-diene$\mathbf{5 , 1 2 - d i o n e}$ (6bb). Azapenam 4bb ($114 \mathrm{mg}, 0.42 \mathrm{mmol}$) was allowed to react according to the general procedure at $100^{\circ} \mathrm{C}$ for 1 h to give 106 $\mathrm{mg}(93 \%)$ of product: $\mathrm{mp} 207-208^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) ;[\alpha]^{25}{ }_{\mathrm{D}}-33.4^{\circ}$ ($c=1.89, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\delta 8.10(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}), 7.70$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.45-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.73(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.34\left(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.0-3.9(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN})$, 3.77 (ddd, $\left.J_{1}=11.8 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, J_{3}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.34$ (dd, $J_{1}=11.8 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 1.87 (oct, $J=6.7 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CHMe} 2), 1.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93$ $\left(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.9(\mathrm{CO}), 167.2(\mathrm{C}=\mathrm{N})$, $138.2,128.3,127.6(\mathrm{Ar}), 81.0\left(\mathrm{C}_{6.13}\right), 67.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 54.6$ (CHN), $30.8\left(\mathrm{C}_{3.10}\right), 21.9\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu$ 1678 (CO), $1657(\mathrm{C=}=\mathrm{N}), 1533 \mathrm{~cm}^{-1}$; MS $457\left(\mathrm{M}^{+}-91, \mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Ph}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $70.04 ; \mathrm{H}, 8.08 ; \mathrm{N}, 10.21$. Found: C, 70.14; H, 8.14; N, 10.47.
(3S,6R,10S,13R)-3,10-Bis(1'-methylethyl)-6,13-bis(oxypropylene)-1,4,8,11-tetraazacyclotetradeca-7($E), 14(E)$-diene-5,12-dione (6cb). Azapenam $4 \mathrm{cb}(102 \mathrm{mg}, 0.49 \mathrm{mmol})$ was allowed to react according to the general procedure at $100^{\circ} \mathrm{C}$ for 1 h to give $81 \mathrm{mg}(82 \%)$ of product: $\mathrm{mp} 195-198^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) ;[\alpha]^{25}{ }_{\mathrm{D}}-99.1^{\circ}\left(\mathrm{c}=1.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.14(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$, $4.10-3.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHN}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.56\left(\mathrm{dd}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=11.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $3.48\left(\mathrm{dd}, J_{1}=12.1 \mathrm{~Hz}, J_{2}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 2.57, 2.12-1.81 (m, 5 H, CH2 CH_{2} and $\left.\mathrm{CHMe}_{2}\right), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.7(\mathrm{CO})$, $165.5(\mathrm{C}=\mathrm{N}), 87.5\left(\mathrm{C}_{6.13}\right), 70.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 61.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 54.2(\mathrm{CHN})$, $34.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 30.9\left(\mathrm{C}_{3.10}\right), 25.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 19.6\left(\mathrm{CH}_{3}\right)$, $18.8\left(\mathrm{CH}_{3}\right) ;$ IR $(\mathrm{KBr}) \nu 1676(\mathrm{CO}), 1656(\mathrm{C}=\mathrm{N}), 1542,1535 \mathrm{~cm}^{-1} ; \mathrm{MS}$ $420\left(\mathrm{M}^{+}\right)$. Anal. Caled for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 62.83 ; \mathrm{H}, 8.63 ; \mathrm{N}, 13.32$. Found: C, 62.77; H, 8.44; N, 13.13.
($6 R^{*}, 13 S^{*}$)-3,3,6,10,10,13-Hexamethyl-6,13-dimethoxy-1,4,8,11-tetraazacyclotetradecane-5,12-dione (7aa). Dioxocyclam $6 a a(91 \mathrm{mg}$, 0.25 mmol) was hydrogenated in MeOH at 45 psi of H_{2} with 25 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ at room temperature for 2 days. Filtration through Celite and evaporation of the solvent gave $86 \mathrm{mg}(94 \%)$ of product as a $1 / 1 \mathrm{mixture}$ of two conformers: $\mathrm{mp} \sim 170^{\circ} \mathrm{C}$ dec (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (two conformers $\mathrm{a} / \mathrm{b} \approx 1 / 1$, NH not visible) $\delta 7.84 / 7.38$ (br s, CONH), 3.70 (a) (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $3.32 / 3.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.02$ (b) (d, $\left.J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.95(\mathrm{a}+\mathrm{b})\left(\mathrm{d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 2.82 (b) (d, $\left.J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.76(\mathrm{a})(\mathrm{d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.48$ (b) (d, $\left.J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.35$ (a) $(\mathrm{d}, J=11.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.50(\mathrm{br}) / 1.42 / 1.41 / 1.37 / 1.33 / 1.31\left(6 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($50^{\circ} \mathrm{C}$, generally broad signals) $\delta 7.78$ (s, 1 H, CONH), 3.25 (s,
$\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.03\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.76\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.37(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (two conformers) $\delta 172.3 / 171.8(\mathrm{CO}), 79.4 / 79.3\left(\mathrm{C}_{6.13}\right)$, $59.4 / 56.8 / 56.1 / 56.0\left(2 \mathrm{CH}_{2}\right), 53.1 / 52.4\left(\mathrm{C}_{3,10}\right) 50.9 / 50.6\left(\mathrm{OCH}_{3}\right)$, $27.3 / 26.5 / 25.3 / 23.4\left(2 \mathrm{CH}_{3}\right), 18.6 / 18.2\left(\mathrm{C}_{6.13}-\mathrm{CH}_{3}\right) ;$ IR $(\mathrm{KBr}) \nu 1664$ (CO), $1541 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $58.04 ; \mathrm{H}, 9.74 ; \mathrm{N}$, 15.04. Found: C, $57.93 ; \mathrm{H}, 9.86 ; \mathrm{N}, 14.88$.

3,3,6,10,10,13-Hexamethyl-6,13-bis(phenylmethoxy)-1,4,8,11-tetra-azacyclotetradecane-5,12-dione (7ba). Dioxocyclam 6ba ($76 \mathrm{mg}, 0.15$ mmol) and racemic CSA ($0.3 \mathrm{mmol}, 68 \mathrm{mg}$) were hydrogenated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 45 psi of H_{2} with 20 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ at $90^{\circ} \mathrm{C}$ for 6 h . Filtration through Celite, washing with 5% aqueous NaHCO_{3}, drying over MgSO_{4}, and evaporation of the solvent gave the product as a mixture of two conformers. Chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{MeOH}$, $2 / 1)$ gave the two conformers I (11.0 mg) and II (7.5 mg) in a total yield of 24%. Conformer I: mp $163-166^{\circ} \mathrm{C}$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR δ 8.69 (s, $1 \mathrm{H}, \mathrm{CONH}$), $7.38-7.26$ (m, $5 \mathrm{H}, \mathrm{ArH}$), 4.55 (d, $J=11.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.36(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic), $2.96(\mathrm{~d}, J=12.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.71\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}, 1 \mathrm{H}\right.$ of each $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.37$ (d, J=11.7 Hz, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 1.78 (br s, $1 \mathrm{H}, \mathrm{NH}$), $1.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 171.9(\mathrm{CO}), 138.6$, $128.4,127.5,127.1(\mathrm{Ar}), 79.4\left(\mathrm{C}_{6.13}\right), 65.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 60.8\left(\mathrm{CH}_{2}\right), 57.7$ $\left(\mathrm{CH}_{2}\right), 52.8\left(\mathrm{C}_{3.10}\right), 25.6\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 19.6\left(\mathrm{C}_{6.13}-\mathrm{CH}_{3}\right)$; IR (KBr) $\nu 1666(\mathrm{CO}), 1533 \mathrm{~cm}^{-1}$. Conformer II: ${ }^{1} \mathrm{H}$ NMR $\delta 7.32-7.25$ (m, 5 $\mathrm{H}, \mathrm{ArH}), 7.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}), 4.58\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right)$, $4.45\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.40\left(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.90\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.76\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.14\left(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.6(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 1.41(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 172.0(\mathrm{CO})$, 138.7, 128.5, 127.6, 127.2 (Ar), $80.4\left(\mathrm{C}_{6.13}\right), 65.1\left(\mathrm{CH}_{2} \mathrm{Ph}^{2}\right), 56.9\left(\mathrm{CH}_{2}\right)$, $56.1\left(\mathrm{CH}_{2}\right), 52.8\left(\mathrm{C}_{3,10}\right), 26.5\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right), 19.6\left(\mathrm{C}_{6.13}-\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu 1666(\mathrm{CO}), 1522 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 68.67$; $\mathrm{H}, 8.45 ; \mathrm{N}, 10.68$. Found: C, $68.43 ; \mathrm{H}, 8.30 ; \mathrm{N}, 10.71$ (mixture of conformers).
($6 R^{*}, 13 S^{*}$)-3,3,10,10-Tetramethyl-6,13-bis(oxypropylene)-1,4,8,11-tetraazacyclotetradecane-5,12-dione (7ca). Dioxocyclam 6ca (62 mg , 0.16 mmol) was hydrogenated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 45 psi of H_{2} with $10 \% \mathrm{Pd} / \mathrm{C}$ $(21 \mathrm{mg})$ at $90-100^{\circ} \mathrm{C}$ for 22 h . Filtration through Celite, washing with 5% aqueous NaHCO_{3}, drying over MgSO_{4}, and evaporation of the solvent gave the product ($54 \mathrm{mg}, 86 \%$) as a mixture of two conformers, a / b $\approx 1 / 3$. Crystallization from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave one conformer: mp $\sim 170{ }^{\circ} \mathrm{C} \mathrm{dec} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.86$ (s, $1 \mathrm{H}, \mathrm{CONH}$), 3.97-3.83 (m, 2 H , $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.49\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.13(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.49\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.36-2.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ furan), $2.17\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.89-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ furan), 1.71-1.61 (m, 1 H, CH2 furan), $1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.0(\mathrm{CO}), 87.5\left(\mathrm{C}_{6.13}\right), 69.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 57.2$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 57.0\left(\mathrm{CH}_{2} \mathrm{~N}\right), 5 \% .8\left(\mathrm{C}_{3.10}\right), 33.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right)$, $25.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu 1648(\mathrm{CO}), 1534 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $60.58 ; \mathrm{H}, 9.15 ; \mathrm{N}, 14.13$. Found: C , 60.62; H, 8.93; N, 13.98.
(3S,6R,10S, 13R)-6,13-Dimethyl-6,13-dimethoxy-3,10-bis (1'-methylethyl)-1,4,8,11-tetraazacyclotetradecane-5,12-dione (7ab). Dioxocyclam 6 ab ($28 \mathrm{mg}, 0.07 \mathrm{mmol}$) was hydrogenated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 45 psi of H_{2} with $10 \% \mathrm{Pd} / \mathrm{C}(7 \mathrm{mg})$ for 37 h at room temperature. Filtration through Celite, washing with 5% aqueous NaHCO_{3}, drying over MgSO_{4}, and evaporation of the solvent gave 20 mg (70%) of product: mp $158-161^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) ;[\alpha]^{25} \mathrm{D}+65.7^{\circ}\left(c=1.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.60(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH}), 3.97$ (dddd, $J_{1}=10.4 \mathrm{~Hz}$, $\left.J_{2}=10.3 \mathrm{~Hz}, J_{3}=6.2 \mathrm{~Hz}, J_{4}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}\right), 3.29(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.10\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.76\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}\right.$ $\left.=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.62\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.48\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 1.67$
(oct, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}$), $1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \delta 172.4(\mathrm{CO})$, $80.5\left(\mathrm{C}_{6.13}\right), 55.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 52.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 51.7\left(\mathrm{OCH}_{3}\right.$ or CHN$), 51.0$ $\left(\mathrm{CHN}\right.$ or $\left.\mathrm{OCH}_{3}\right), 30.6\left(\mathrm{CHMe}_{2}\right), 19.7\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right)$; IR (KBr) $\nu 1665(\mathrm{CO}), 1534 \mathrm{~cm}^{-1}$. Anal. Caled for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 59.97; H, 10.06; N, 13.99. Found: C, 59.97; H, 9.92; N, 13.99.
($3 S, 6 R, 10 S, 13 R$)-6,13-Dimethyl-6,13-bis(phenylmethoxy)-3,10-bis-(1'-methylethyl)-1,4,8,11-tetraazacyclotetradecane-5,12-dione (7bb). Dioxocyclam 6 bb ($42 \mathrm{mg}, 0.08 \mathrm{mmol}$) was hydrogenated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 45 psi of H_{2} with $10 \% \mathrm{Pd} / \mathrm{C}(12 \mathrm{mg})$ for 60 h at $70-80^{\circ} \mathrm{C}$. Filtration through Celite, washing with 5% aqueous NaHCO_{3}, drying over MgSO_{4}, and evaporation of the solvent gave $43 \mathrm{mg}(96 \%)$ of product: mp $129-130^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) ;[\alpha]^{25} \mathrm{D}+28.9^{\circ}\left(c=1.39, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.05(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CONH})$, $4.58\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.48\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right)$, 3.96 (dddd, $J_{1}=10.0 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, J_{3}=6.6 \mathrm{~Hz}, J_{4}=3.2 \mathrm{~Hz}, 1 \mathrm{H}$ CHN), $3.10\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.77\left(\mathrm{dd}, J_{1}=12.7 \mathrm{~Hz}, J_{2}\right.$ $\left.=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.66\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.61(\mathrm{dd}$, $J_{1}=12.7 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 1.65$ (oct, $\left.J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 172.4(\mathrm{CO})$, $138.5,128.4,127.5,126.9(\mathrm{Ar}), 80.8\left(\mathrm{C}_{6.13}\right), 65.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 56.3(\mathrm{C}-$ $\left.\mathrm{H}_{2} \mathrm{~N}\right), 52.3\left(\mathrm{CH}_{2} \mathrm{~N}\right), 52.2(\mathrm{CHN}), 30.5\left(\mathrm{CHMe}_{2}\right), 19.6\left(\mathrm{CH}_{3}\right), 19.5$ $\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu 1661(\mathrm{CO}), 1526 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $69.53 ; \mathrm{H}, 8.75 ; \mathrm{N}, 10.14$. Found: C, $69.69 ; \mathrm{H}, 8.60$; N, 10.07.
(3S,6R,10S,13R)-3,10-Bis(1^{\prime}-methylethyl)-6,13-bis(oxypropylene)-1,4,8,11-tetraazacyclotetradecane-5,12-dione (7cb). Dioxocyclam 6cb (54 $\mathrm{mg}, 0.13 \mathrm{mmol}$) was hydrogenated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 45 psi of H_{2} with 10% $\mathrm{Pd} / \mathrm{C}(17 \mathrm{mg})$ for 34 h at $70-80^{\circ} \mathrm{C}$. Filtration through Celite, washing with 5% aqueous NaHCO_{3}, drying over MgSO_{4}, and evaporation of the solvent gave $50 \mathrm{mg}(92 \%)$ of product: $\mathrm{mp} 173-176^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$; $[\alpha]^{25}{ }_{\mathrm{D}}+40.2^{\circ}\left(c=1.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.52(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CONH}$), $3.99-3.81$ (m, $3 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}$ and CHN), 3.47 (d, $J=11.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.78\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.7(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.66\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.46\left(\right.$ ddd, $\left.J_{1}=12.4 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}, J_{3}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}\left(3^{\prime}\right)\right), 2.34$ (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 1.90-1.79 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$ furan), 1.73-1.59 (m, $2 \mathrm{H}, 1 \mathrm{CH}_{2}$ furan and CHMe_{2}), $0.91\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.87$ $\left(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.1(\mathrm{CO}), 87.7\left(\mathrm{C}_{6.13}\right), 68.8$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 56.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 53.0\left(\mathrm{CH}_{2} \mathrm{~N}\right), 51.6(\mathrm{CHN}), 33.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}-\right.$ $\left.\mathrm{H}_{2}\right), 30.5\left(\mathrm{CHMe}_{2}\right), 25.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 19.7\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu 1664(\mathrm{CO}), 1528 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 62.24 ;$ H, 9.50; N, 13.20. Found: C, 62.32; H, 9.33; N, 13.44.

Acknowledgment. Support for this research by National Science Foundation Grant CHE-8921992 is gratefully acknowledged.

Registry No. 1a, 141345-35-9; 1b, 141345-36-0; 2a, 20540-69-6; 2b, 117041-03-9; 2c, 54040-15-2; 3aa, 141345-37-1; 3ab, 141345-38-2; 3ba, 141345-39-3; 3bb, 141345-40-6; 3ca, 141345-41-7; 3cb, 141345-42-8; 4aa, 141345-43-9; 4ab, 141345-44-0; 4ba, 141345-45-1; 4bb, 141345-46-2; 4ca, 141345-47-3; 4cb, 141345-48-4; 5aa, 141345-49-5; 5ab, 141345-50-8; 5ba, 141345-51-9; 5bb, 141345-52-0; 5ca, 141345-53-1; 5cb, 141345-54-2; 6aa, 141345-55-3; 6ab, 141345-56-4; 6ba, 141345-57-5; 6bb, 141345-58-6; 6ca, 141345-59-7; 6cb, 141345-60-0; 7aa, 141345-61-1; 7ab, 141345-62-2; 7ba, 141345-63-3; 7bb, 141345-64-4; 7ca, 141345-65-5; 7cb, 141345-66-6; chromium hexacarbonyl, $13007-$ 92-6; 4-chlorobutyryl chloride, 4635-59-0; 2-methyl-1,2-propanediamine, 811-93-8; tert-butyl isocyanide, 7188-38-7; 4,4-dimethyl- Δ^{2}-imidazoline, 2305-59-1; (S)-valinol, 2026-48-4; (S)- N-(benzyloxycarbonyl)valinol, 6216-65-5; (S)-3-methyl-2-[(benzyloxycarbonyl)amino]butyl azide, 141345-67-7; (S)-3-methyl-1,2-butanediamine, 40630-14-6; (S)-4-(1'-methylethyl)- Δ^{2}-imidazoline, 141345-68-8.

[^0]: (1) Hegedus, L. S.; McGuire, M. A.; Schultze, L. M.; Yijun, C.; Anderson, O. P. J. Am. Chem. Soc. 1984, 106, 2680.
 (2) (a) Hegedus, L. S.; deWeck, G.; D'Andrea, S. J. Am. Chem. Soc. 1988, 110, 2122. (b) Hegedus, L. S.; Montgomery, J.; Narukawa, Y.; Snustad, D. C. J. Am. Chem. Soc. 1991, 113, 5784.
 (3) Hegedus, L. S.; D'Andrea, S. J. Org. Chem. 1988, 53, 3113.
 (4) Hegedus, L. S.; Schultze, L. M.; Toro, J.; Yijun, C. Tetrahedron 1985, 41, 5833.
 (5) Borel, C.; Hegedus, L. S.; Krebs, J.; Satoh, Y. J. Am. Chem. Soc. 1987, 109, 1101.
 (6) Narukawa, Y.; Juneau, K.; Snustad, D. C.; Miller, D. B.; Hegedus, L. S. J. Org. Chem., submitted for publication.
 (7) Hegedus, L. S.; Imwinkelried, R.; Alarid-Sargent, M.; Dvorak, D.; Satoh, Y. J. Am. Chem. Soc. 1990, 112, 1109.
 (8) Nagakura, I. Heterocycles 1981, 16, 1495.
 (9) Davies, D.; Pearson, M. J. J. Chem. Soc., Perkin Trans. 1 1981, 2539.
 (10) Johnson, G.; Rees, P. M.; Ross, B. C. J. Chem. Soc., Chem. Commun. 1984, 970.
 (11) (a) Alper, H.; Perera, Ch. P.; Ahmed, F. R. J. Am. Chem. Soc. 1981, 103, 1289. (b) Alper, H.; Perera, C. Organometallics 1982, $1,70$.

[^1]: (12) Johnson, G.; Rosse, B. C. J. Chem. Soc., Chem. Commun. 1981, 1269.
 (13) Shibata, T.; Sugimura, Y.; Sato, S.; Kawazoe, K. Heterocycles 1985, 23, 3069.
 (14) Pacansky, J.; Chang, J. S.; Brown, D. W.; Schwarz, W. J. Org. Chem. 1982, 47, 2233.
 (15) Bose, A. K.; Kapin, J. E.; Fakey, J. L.; Mankas, M. S. J. Org. Chem. 1973, 38, 3437.
 (16) (a) Bieräugel, H.; Plemp, R.; Hiemstra, H. C.; Pandit, U. K. Tetrahedron 1983, 39, 3971 . (b) Grundmann, C.; Krentzberger, A. J. Am. Chem. Soc. 1955, 77, 6559. (c) Jentzsch, W.; Seefelder, M. Chem. Ber. 1965, 98, 1342.
 (17) Ito, Y.; Inubushi, Y.; Zenbayashi, M.; Tomita, S.; Saegusa, T. J. Am. Chem. Soc. 1973, 95, 4447.

[^2]: (19) Attempts have been made to correlate biological activity with the degree of pyramidalization of the amide nitrogen: Glidewell, C.; Mollison, G. S. M. J. Mol. Struct. 1981, 72, 203.
 (20) For examples of syntheses of specific hexahydrodiazepinones, see: (a) Crombie, L.; Jones, R. C. F.; Haigh, D. Tetrahedron Lett. 1986, 27, 5151. (b) Crombie, L.; Jones, R. C. F.; Osborne, S.; Hat-Zin, A. R. J. Chem. Soc., Chem. Commun. 1983, 959. (c) Ueda, T.; Kato, Y., Sakakibara, J.; Murata, M. Chem. Pharm. Bull. 1988, 36, 2902. (d) Takechi, H.; Machida, M.; Kanaoka, Y. Liebigs Ann. Chem. 1986, 859. (e) Pinnen, F.; Zanotti, G.; Lucente, G. J. Chem. Soc., Perkin Trans. 1 1982, 1311. (f) Tatee, T.; Narita, K.; Kurashige, S.; Ito, S.; Miyazaki, H.; Yamanaka, H.; Mizugaki, M.; Sakamoto, T.; Fukuda, H. Chem. Pharm. Bull. 1987, 35, 3676.

[^3]: (21) For reviews, see: (a) Busch, D. H. Acc. Chem. Res. 1978, /1, 392 (b) Ito, T.; Kato, M.; Yamashita, M.; Ito, H. J. Coord. Chem. 1986, is, 29. (c) Bhallacharya, S.; Mukheijee, R.; Chakraworthy, A. Inorg. Chem. 1986, 25, 3448.
 (22) (a) Caulkett, P. W. R.; Greatbanks, D.; Turner, R. W.; Jarvis, J. A. J. Heterocycles 1978, 9, 1003. (b) Ferguson, G.; Roberts, P. J.; Lloyd, D.; Hideg, K.; Hay, R. W.; Pipiani, D. P. J. Chem. Res. 1978, 314. (c) Hankovszky, O. H.; Hideg, K.; Lloyd, D. C.; McNab, H. J. Chem. Soc., Perkin Trans. 1 1979, 1345. (d) Miyamura, K.; Kohzuki, M.; Narushima, R.; Sabwi, M.; Gohshi, Y.; Tsuboyama, S.; Tsuboyama, K.; Sakurai, T. J. Chem. Soc., Dalton Trans. 1987, 3093.
 (23) Kobiro, K.; Nakayama, A.; Hiro, T.; Swiva, M.; Kakiuchi, K.; Toke, Y.; Odaira, Y. Chem. Lett. 1990, 1979.
 (24) (a) Stetter, H.; Frank, W.; Mertens, R. Tetrahedron 1981, 37, 1967. (b) Benabdallah, T.; Guglielmetti, R. Helv. Chim. Acta 1988, 71, 602.

[^4]: (44) Imwinkelried, R.; Hegedus, L. S. Organometallics 1988, 7, 702.
 (45) Aumann, R.; Fischer, E. O. Chem. Ber. 1968, 101, 954.
 (46) Hafner, A.; Hegedus, L. S.; deWeck, G.; Hawkins, B.; Dötz, K. H. J. Am. Chem. Soc. 1988, 110, 8413.

